精英家教网 > 高中数学 > 题目详情
8.如图,已知PA是圆O的切线,切点为A,直线PO交圆O于B,C两点,AC=1,∠BAP=120°,则圆O的面积为π.

分析 由已知中,已知PA是圆O的切线,切点为A,直线PO交圆O于B,C两点,AC=2,∠PAB=120°,我们根据切线的性质,等腰三角形两底角相待,直径所对圆周角为直角,30°所对的直角边等于斜边的一半,求出圆的半径,代入圆面积公式,即可得到答案.

解答 解:∵PA是圆O的切线,
∴OA⊥AP.
又∵∠PAB=120°,
∴∠BAO=∠ABO=30°.
又∵在Rt△ABC中,AC=1,
∴BC=2,即圆O的直径2R=2,
∴圆O的面积S=πR2=π,
故答案为:π.

点评 本题考查的知识点是切线的性质,圆周角定理,其中根据已知条件,求出圆的半径是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.直线y=x与曲线C:$\left\{{\begin{array}{l}{x=3cosθ}\\{y=4sinθ}\end{array}}$(θ为参数,π≤θ≤2π)的交点坐标是$(-\frac{12}{5},-\frac{12}{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>0,b>0,ab=a+b+3,求:
(1)ab的最小值;
(2)a+b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}(n∈N*,1≤n≤46)满足a1=a,an+1-an=$\left\{{\begin{array}{l}{d,1≤n≤15}\\{1,16≤n≤30}\\{\frac{1}{d},31≤n≤45}\end{array}}$其中d≠0,n∈N*
(1)当a=1时,求a46关于d的表达式,并求a46的取值范围;
(2)设集合M={b|b=ai+aj+ak,i,j,k∈N*,1≤i<j<k≤16}.若a=$\frac{1}{3}$,d=$\frac{1}{4}$,求证:2∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知某个几何体的三视图如图所示,则这个几何体最长的棱长为(  )
A.$\sqrt{14}$B.$\sqrt{13}$C.$\sqrt{10}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等比数列{an+2}的公比q=2,a1=1,数列{bn}满足:$\frac{b_n}{{{a_{n+1}}}}=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{{1+{b_n}}}{{{a_{n+1}}}}$;
(Ⅲ)求证:$(1+\frac{1}{b_1})(1+\frac{1}{b_2})…(1+\frac{1}{b_n})<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点A(0,0),B(2,0),C(2,-3),D(3,1),则在不等式3x-y-6≥0表示的平面区域内的点是B,C,D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:
P(μ-σ<X≤μ+σ)=0.6826,
P(μ-2σ<X≤μ+2σ)=0.9544,
P(μ-3σ<X≤μ+3σ)=0.9974,
某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为(  )
A.32B.16C.8D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设α为锐角,若cosα=$\frac{4}{5}$,则sin2α的值为(  )
A.$\frac{12}{25}$B.$\frac{24}{25}$C.$-\frac{24}{25}$D.$-\frac{12}{25}$

查看答案和解析>>

同步练习册答案