13£®ÒÑÖªµÈ±ÈÊýÁÐ{an+2}µÄ¹«±Èq=2£¬a1=1£¬ÊýÁÐ{bn}Âú×㣺$\frac{b_n}{{{a_{n+1}}}}=\frac{1}{a_1}+\frac{1}{a_2}+¡­+\frac{1}{a_n}$£¨n¡ÊN*£©£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Ö¤Ã÷£º$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{{1+{b_n}}}{{{a_{n+1}}}}$£»
£¨¢ó£©ÇóÖ¤£º$£¨1+\frac{1}{b_1}£©£¨1+\frac{1}{b_2}£©¡­£¨1+\frac{1}{b_n}£©£¼\frac{3}{2}$£®

·ÖÎö £¨¢ñ£©Í¨¹ýÊýÁÐ{an+2}µÄ¹«±Èq=2¡¢Ê×Ïîa1+2=3£¬¿ÉµÃ${a_n}+2=3¡Á{2^{n-1}}$£¬½ø¶ø¿ÉµÃ½áÂÛ£»
£¨¢ò£©Í¨¹ý$\frac{b_n}{{{a_{n+1}}}}=\frac{1}{a_1}+\frac{1}{a_2}+¡­+\frac{1}{a_n}$±äÐμ´µÃ½áÂÛ£»
£¨¢ó£©Í¨¹ý£¨¢ñ£©¡¢£¨¢ò£©¿ÉÖªa1=1¡¢b1=a2=4£¬$\frac{{1+{b_n}}}{{{b_{n+1}}}}=\frac{{{a_{n+1}}}}{{{a_{n+2}}}}$£¬¾­¹ý±äÐοɵÃ$£¨1+\frac{1}{b_1}£©£¨1+\frac{1}{b_2}£©¡­£¨1+\frac{1}{b_n}£©$=$1+\frac{1}{4}+¡­+\frac{1}{{3¡Á{2^{n-1}}-2}}+\frac{1}{{3¡Á{2^n}-2}}$£¬ÀûÓòðÏî·¨¿ÉµÃ$\frac{1}{a_k}=\frac{1}{{3¡Á{2^{k-1}}-2}}$£¼2$£¨\frac{1}{a_k}-\frac{1}{{{a_{k+1}}}}£©$£¨ÆäÖÐk¡ÊN*£©£¬¼ÆËã¼´¿É£®

½â´ð £¨¢ñ£©½â£º¡ßÊýÁÐ{an+2}µÄ¹«±Èq=2£¬Ê×Ïîa1+2=3£¬
¡à${a_n}+2=3¡Á{2^{n-1}}$£¬
¡à${a_n}=3¡Á{2^{n-1}}-2$£»
£¨¢ò£©Ö¤Ã÷£º¡ß$\frac{b_n}{{{a_{n+1}}}}=\frac{1}{a_1}+\frac{1}{a_2}+¡­+\frac{1}{a_n}$£¬
¡à$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{1}{a_1}+\frac{1}{a_2}+¡­+\frac{1}{{{a_{n+1}}}}$£¬
¡à$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{b_n}{{{a_{n+1}}}}+\frac{1}{{{a_{n+1}}}}=\frac{{1+{b_n}}}{{{a_{n+1}}}}$£¬
¡à$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{{1+{b_n}}}{{{a_{n+1}}}}$³ÉÁ¢£»
£¨¢ó£©Ö¤Ã÷£ºÓÉ£¨¢ñ£©¡¢£¨¢ò£©¿ÉÖª£¬a1=1£¬b1=a2=4£¬
ÓÉ$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{{1+{b_n}}}{{{a_{n+1}}}}$£¬µÃ$\frac{{1+{b_n}}}{{{b_{n+1}}}}=\frac{{{a_{n+1}}}}{{{a_{n+2}}}}$£¬
¡à$£¨1+\frac{1}{b_1}£©£¨1+\frac{1}{b_2}£©¡­£¨1+\frac{1}{b_n}£©$=$\frac{{1+{b_1}}}{b_1}•\frac{{1+{b_2}}}{b_2}•\frac{{1+{b_3}}}{b_3}¡­\frac{{1+{b_n}}}{b_n}$
=$\frac{{1+{b_1}}}{{{b_1}{b_2}}}•\frac{{1+{b_2}}}{b_3}•\frac{{1+{b_3}}}{b_4}¡­\frac{{1+{b_n}}}{{{b_{n+1}}}}•{b_{n+1}}$
=$\frac{1}{b_1}•\frac{a_2}{a_3}•\frac{a_3}{a_4}¡­\frac{{{a_{n+1}}}}{{{a_{n+2}}}}•{b_{n+1}}$=$\frac{a_2}{b_1}•\frac{{{b_{n+1}}}}{{{a_{n+2}}}}$=$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}$
=$\frac{1}{a_1}+\frac{1}{a_2}+¡­+\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}$£¬
ÓÖ¡ß$\frac{1}{a_1}+\frac{1}{a_2}+¡­+\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}$=$1+\frac{1}{4}+¡­+\frac{1}{{3¡Á{2^{n-1}}-2}}+\frac{1}{{3¡Á{2^n}-2}}$£¬
¡à$\frac{1}{a_k}=\frac{1}{{3¡Á{2^{k-1}}-2}}$
=$\frac{{3¡Á{2^k}-2}}{{£¨3¡Á{2^{k-1}}-2£©£¨3¡Á{2^k}-2£©}}$
$£¼\frac{{3¡Á{2^k}}}{{£¨3¡Á{2^{k-1}}-2£©£¨3¡Á{2^k}-2£©}}$
=$2¡Á\frac{{£¨3¡Á{2^k}-2£©-£¨3¡Á{2^{k-1}}-2£©}}{{£¨3¡Á{2^k}-2£©£¨3¡Á{2^{k-1}}-2£©}}$
=2$£¨\frac{1}{{3¡Á{2^{k-1}}-2}}-\frac{1}{{3¡Á{2^k}-2}}£©$
=2$£¨\frac{1}{a_k}-\frac{1}{{{a_{k+1}}}}£©$£¨ÆäÖÐk¡ÊN*£©£¬
¡à$\frac{1}{a_1}+\frac{1}{a_2}+¡­+\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}$$£¼1+2[£¨\frac{1}{a_2}-\frac{1}{a_3}£©+£¨\frac{1}{a_3}-\frac{1}{a_4}£©+¡­+£¨\frac{1}{a_n}-\frac{1}{{{a_{n+1}}}}£©]$
=$1+\frac{2}{a_2}-\frac{2}{{{a_{n+1}}}}$
=$1+\frac{2}{4}-\frac{2}{{3¡Á{2^n}-2}}$
$£¼1+\frac{2}{4}=\frac{3}{2}$£¬
¡à$£¨1+\frac{1}{b_1}£©£¨1+\frac{1}{b_2}£©£¨1+\frac{1}{b_3}£©¡­£¨1+\frac{1}{b_n}£©£¼\frac{3}{2}$£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏʽ£¬Ç°nÏîºÍ£¬¿¼²é²ðÏî·¨£¬¿¼²é¼ÆËãÄÜÁ¦¡¢Áé»î´¦ÀíÎÊÌâµÄÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¼¯ºÏA={1£¬2£¬3}£¬B={Z¡ÊZ|1£¼x£¼4}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{1}B£®{2£¬4}C£®{2£¬3}D£®£¨1£¬4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªx¡¢y¡ÊR£¬²»µÈʽ×é$\left\{\begin{array}{l}x+2y¡Ý0\\ x-y¡Ü0\\ 0¡Üy¡Ük\end{array}\right.$Ëù±íʾµÄÆ½ÃæÇøÓòµÄÃæ»ýΪ6£¬ÔòʵÊýkµÄֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ö´ÐÐÈçͼËùʾµÄËã·¨Á÷³Ìͼ£®ÈôÊäÈëx=0£¬ÔòÊä³öµÄyµÄÖµÊÇ£¨¡¡¡¡£©
A£®-3B£®-2C£®-1D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èçͼ£¬ÒÑÖªPAÊÇÔ²OµÄÇÐÏߣ¬ÇеãΪA£¬Ö±ÏßPO½»Ô²OÓÚB£¬CÁ½µã£¬AC=1£¬¡ÏBAP=120¡ã£¬ÔòÔ²OµÄÃæ»ýΪ¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÈçͼһËùʾ£¬ËıßÐÎABCDΪµÈÑüÌÝÐΣ¬AD¡ÎBC£¬AD=4£¬BC=8£¬O¡¢O1·Ö±ðΪBC¡¢ADµÄÖе㣬½«ÌÝÐÎABOO1ÑØÖ±ÏßOO1ÕÛÆð£¬Ê¹µÃÆ½ÃæABOO1¡ÍÆ½ÃæOO1DC£¬µÃµ½Èçͼ¶þËùʾµÄÈýÀą̂AO1D-BOC£¬EΪBCµÄÖе㣮
£¨1£©ÇóÖ¤£ºBC¡ÍÆ½ÃæOO1E£»
£¨2£©ÈôÖ±ÏßO1EÓëÆ½ÃæABCDËù³ÉµÄ½ÇµÄÕýÏÒֵΪ$\frac{\sqrt{10}}{10}$£¬ÇóÈýÀâ×¶A-BOCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÔڵȲîÊýÁÐ{an}ÖУ¬SnΪÆäǰnÏîµÄºÍ£¬Èôa3+a8=29£¬S3=12£¬ÔòͨÏʽan=3n-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=cos£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬¦Ð£¼¦Õ£¼2¦Ð£©ÎªÆæº¯Êý£¬ÇÒͼÏóÉÏÏàÁÚµÄÒ»¸ö×î¸ßµãºÍÒ»¸ö×îµÍµãÖ®¼äµÄ¾àÀëΪ$\sqrt{4+{¦Ð}^{2}}$£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôf£¨¦Á£©=$\frac{3}{5}$£¬¦ÁΪµÚ¶þÏóÏ޽ǣ¬Çótan£¨¦Á-$\frac{¦Ð}{4}$£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Ö±Ïßy=-2x+2Ç¡ºÃ¾­¹ýÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÓÒ½¹µãºÍÉ϶¥µã£¬ÔòÍÖÔ²µÄÀëÐÄÂʵÈÓÚ£¨¡¡¡¡£©
A£®$\frac{\sqrt{5}}{5}$B£®$\frac{1}{2}$C£®$\frac{2\sqrt{5}}{5}$D£®$\frac{\sqrt{5}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸