精英家教网 > 高中数学 > 题目详情
5.在等差数列{an}中,Sn为其前n项的和,若a3+a8=29,S3=12,则通项公式an=3n-2.

分析 由题意可得a1和公差d的方程组,解方程组代入通项公式可得.

解答 解:设等差数列{an}的公差为d,
∵a3+a8=29,S3=12,
∴2a1+9d=29,3a1+3d=12,
解得a1=1,d=3,
∴通项公式an=1+3(n-1)=3n-2
故答案为:3n-2.

点评 本题考查等差数列的求和公式和通项公式,求出数列的首项和公差是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,AB是圆O的直径,点C在圆O上,延长BC到D,使BC=CD,过点C作圆O的切线交AD于E.
(Ⅰ)求证:CE⊥AD;
(Ⅱ)若AB=2,ED=$\frac{1}{2}$,求证:△ABD是等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}(n∈N*,1≤n≤46)满足a1=a,an+1-an=$\left\{{\begin{array}{l}{d,1≤n≤15}\\{1,16≤n≤30}\\{\frac{1}{d},31≤n≤45}\end{array}}$其中d≠0,n∈N*
(1)当a=1时,求a46关于d的表达式,并求a46的取值范围;
(2)设集合M={b|b=ai+aj+ak,i,j,k∈N*,1≤i<j<k≤16}.若a=$\frac{1}{3}$,d=$\frac{1}{4}$,求证:2∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等比数列{an+2}的公比q=2,a1=1,数列{bn}满足:$\frac{b_n}{{{a_{n+1}}}}=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{{1+{b_n}}}{{{a_{n+1}}}}$;
(Ⅲ)求证:$(1+\frac{1}{b_1})(1+\frac{1}{b_2})…(1+\frac{1}{b_n})<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点A(0,0),B(2,0),C(2,-3),D(3,1),则在不等式3x-y-6≥0表示的平面区域内的点是B,C,D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=$\sqrt{{x}^{2}-2x+a}$的定义域为R,则实数a的取值集合为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:
P(μ-σ<X≤μ+σ)=0.6826,
P(μ-2σ<X≤μ+2σ)=0.9544,
P(μ-3σ<X≤μ+3σ)=0.9974,
某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为(  )
A.32B.16C.8D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,A、B是圆O上的两点,∠AOB=120°,C是AB弧的中点.
(1)求证:AB平分∠OAC;
(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}$、$\overrightarrow{OB}$的夹角是120°,$\overrightarrow{OA}$、$\overrightarrow{OC}$的夹角为30°,$\overrightarrow{OC}$=5,$\overrightarrow{OA}$、$\overrightarrow{OB}$表示$\overrightarrow{OC}$.

查看答案和解析>>

同步练习册答案