精英家教网 > 高中数学 > 题目详情
18.如图一所示,四边形ABCD为等腰梯形,AD∥BC,AD=4,BC=8,O、O1分别为BC、AD的中点,将梯形ABOO1沿直线OO1折起,使得平面ABOO1⊥平面OO1DC,得到如图二所示的三棱台AO1D-BOC,E为BC的中点.
(1)求证:BC⊥平面OO1E;
(2)若直线O1E与平面ABCD所成的角的正弦值为$\frac{\sqrt{10}}{10}$,求三棱锥A-BOC的体积.

分析 (1)在等腰梯形ABCD中,O、O1分别为两底BC、AD的中点,可得OO1⊥BC,因此在三棱台三棱台AO1D-BOC中,OO1⊥BO,OO1⊥OC,利用线面垂直的判定与性质可得OO1⊥BC,利用等腰三角形的性质可得:OE⊥BC,即可证明.
(2)由(1)可得:OO1⊥平面BOC,OO1⊥BC,又平面ABOO1⊥平面OO1DC,可得∠BOC=90°.以O为坐标原点,分别以$\overrightarrow{OB}$,$\overrightarrow{OC}$,$\overrightarrow{O{O}_{1}}$的方向为x轴,y轴,z轴的正方向建立空间直角坐标系(如图所示).设OO1=m,设平面ABCD的一个法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=2x-mz=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-4x+4y=0}\end{array}\right.$,可得$\overrightarrow{n}$,利用设直线O1E与平面ABCD所成的角为θ,sinθ=$|cos<\overrightarrow{{O}_{1}E},\overrightarrow{n}>|$=$\frac{|\overrightarrow{{O}_{1}E}•\overrightarrow{n}|}{|\overrightarrow{{O}_{1}E}||\overrightarrow{n}|}$,即可得出.

解答 解:(1)在等腰梯形ABCD中,O、O1分别为两底BC、AD的中点,
∴OO1⊥BC,
因此在三棱台三棱台AO1D-BOC中,OO1⊥BO,OO1⊥OC,
又BO∩OC=O,∴OO1⊥平面BOC,∴OO1⊥BC,
又BO=OC,E为BC的中点,∴OE⊥BC,
∵OO1∩OE=O,∴BC⊥平面OO1E;
(2)由(1)可得:OO1⊥平面BOC,∴OO1⊥BC,
又平面ABOO1⊥平面OO1DC,∴∠BOC=90°.
以O为坐标原点,分别以$\overrightarrow{OB}$,$\overrightarrow{OC}$,$\overrightarrow{O{O}_{1}}$的方向为x轴,y轴,z轴的正方向建立空间直角坐标系(如图所示).
设OO1=m,由题意可得,O(0,0,0),B(4,0,0),C(0,4,0),O1(0,0,m),E(2,2,0),A(2,0,m).
∴$\overrightarrow{AB}$=(2,0,-m),$\overrightarrow{BC}$=(-4,4,0),$\overrightarrow{{O}_{1}E}$=(2,2,-m).
设平面ABCD的一个法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=2x-mz=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-4x+4y=0}\end{array}\right.$,令x=1,则y=1,z=$\frac{2}{m}$,即$\overrightarrow{n}$=$(1,1,\frac{2}{m})$,
设直线O1E与平面ABCD所成的角为θ,
则sinθ=$|cos<\overrightarrow{{O}_{1}E},\overrightarrow{n}>|$=$\frac{|\overrightarrow{{O}_{1}E}•\overrightarrow{n}|}{|\overrightarrow{{O}_{1}E}||\overrightarrow{n}|}$=$\frac{2}{\sqrt{8+{m}^{2}}\sqrt{2+\frac{4}{{m}^{2}}}}$=$\frac{\sqrt{10}}{10}$,
解得 m=$\sqrt{2}$或m=2$\sqrt{2}$,
∴VA-BOC=$\frac{1}{3}×{S}_{△BOC}×O{O}_{1}$=$\frac{1}{3}×\frac{1}{2}×{4}^{2}×m$=$\frac{8\sqrt{2}}{3}$或$\frac{16\sqrt{2}}{3}$.

点评 本题考查了线面面面垂直的判定与性质定理、等腰三角形与等腰梯形的性质、线面角的计算公式、三棱锥的体积计算公式,考查了空间想象能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设抛物线y2=2px(p>0)的焦点为F,其准线与x轴的交点为Q,过Q点的直线l交抛物线于A、B两点,若直线l的斜率为$\frac{\sqrt{2}}{2}$,则$\overrightarrow{FA}$•$\overrightarrow{FB}$=(  )
A.0B.-1C.2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.我市湘阴县地处长沙北部、南洞庭湖滨,是长株潭“两型社会”综合配套改革试验区核心区--滨湖示范区的重要组成部分,是全省承接产业发展加工贸易试点县和全省最具投资吸引力的五个县之一.在市委市政府的指导下,计划于2015年在湘阴县长湘公路一侧建设一新型工业园.利用已有地形,现拟在乡村公路上某处C到长湘公路某处B新建一条长为$\sqrt{3}$公里的公路,围成一个三角形区域建设工业园(如图所示).已知∠A=60°.
(1)若B=$\frac{π}{4}$,求工业园的面积.
(2)求工业园面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}-2x+3,x≤0\\|{2-lnx}|,x>0\end{array}\right.$,直线y=k与函数f(x)的图象相交于四个不同的点,交点的横坐标从小到大依次记为a,b,c,d,则abcd的取值范围是(  )
A.[0,e2]B.[0,e2C.[0,e4]D.[0,e4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等比数列{an+2}的公比q=2,a1=1,数列{bn}满足:$\frac{b_n}{{{a_{n+1}}}}=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{{1+{b_n}}}{{{a_{n+1}}}}$;
(Ⅲ)求证:$(1+\frac{1}{b_1})(1+\frac{1}{b_2})…(1+\frac{1}{b_n})<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x2-ax+1)ex,x∈R.
(1)若函数f(x)的图象在(0,f(0))处的切线与直线x+y-3=0垂直,求实数a的值;
(2)求f(x)的单调区间;
(3)当a=2时,若对于任意x∈[-2,2],t∈[1,3],f(x)≥t2-2mt+2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=$\sqrt{{x}^{2}-2x+a}$的定义域为R,则实数a的取值集合为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{201{5}^{(x+1)}+2017}{201{5}^{x}+1}$+2015sinx在x∈[-t,t]上的最大值为M,最小值为N,则M+N的值为(  )
A.0B.4032C.4030D.4034

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.阅读如图所示的程序,该程序输出的结果是27.

查看答案和解析>>

同步练习册答案