精英家教网 > 高中数学 > 题目详情
3.已知某个几何体的三视图如图所示,则这个几何体最长的棱长为(  )
A.$\sqrt{14}$B.$\sqrt{13}$C.$\sqrt{10}$D.3

分析 由题意,几何体为底面是边长为3的正方形,俯视图为一侧面,且垂直于底面,即可求出这个几何体最长的棱长.

解答 解:由题意,几何体为底面是边长为3的正方形,俯视图为一侧面,且垂直于底面,
所以这个几何体最长的棱长为$\sqrt{{2}^{2}+{1}^{2}+{3}^{2}}$=$\sqrt{14}$,
故选:A.

点评 本题考查了由三视图求几何体的最长棱长问题,根据三视图判断几何体的结构特征是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,△ABC内接于直径为BC的圆O,过点A作圆O的切线交CB的延长线于点P,∠BAC的平分线分别交BC和圆O于点D、E,若PA=2PB=10.
(1)求证:AC=2AB;
(2)求AD•DE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.雾霾天气严重影响我们的生活,加强环境保护是今年两会关注的热点,我国的《环境空气质量标准》指出空气质量指数在0-50为优秀,各类人群可正常活动.某市环保局对全市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽50个作为样本进行分析报告,样本数据分组区间为(5,15],(15,25],(25,35],(35,45],由此得到样本的空气质量指数频率分布直方图,如图.

(1)求a的值;
(2)根据样本数据,试估计这一年的空气质量指数的平均值;
(3)如果空气质量指数不超过15,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取3天的数值,其中达到“特优等级”的天数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex-x,其中e为自然底数.
(1)求函数f(x)的极值;
(2)若函数F(x)=f(x)-ax2-1的导函数F'(x)在[0,+∞)上是增函数,求实数a的取值范围;
(3)求证:$f(\frac{1}{2})$+$f(\frac{1}{3})$+$f(\frac{1}{4})$+…+$f(\frac{1}{n+1})$>n+$\frac{n}{4(n+2)}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>0 b>0.a、b的等差中项是$\frac{1}{2}$,且x=a+$\frac{1}{a}$,y=b+$\frac{1}{b}$,则xy的最小值是$\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,已知PA是圆O的切线,切点为A,直线PO交圆O于B,C两点,AC=1,∠BAP=120°,则圆O的面积为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.图1是某高三学生进入高中三年来的数学考试成绩的茎叶图,图中第1次到14次的考试成绩依次记为A1,A2,…A14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an+1+an}的前n项和Sn=2n+1-2,a1=0.
(1)求数列{an+1+an}的通项公式;
(2)求a2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前项n和为Sn,点(n,Sn)(n∈N*)均在函数f(x)=3x2-2x的图象上.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{3}{{{a_n}{a_{n+1}}}},{T_n}$是数列{bn}的前n项和,求使得2Tn≤λ-2015对所有n∈N*都成立的实数λ的范围.

查看答案和解析>>

同步练习册答案