精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
1
2
PD.
(Ⅰ)证明:平面PQC⊥平面DCQ;
(Ⅱ)求平面QBP与平面BPC的夹角余弦值.
考点:二面角的平面角及求法,平面与平面垂直的判定
专题:空间位置关系与距离,空间角,空间向量及应用
分析:(Ⅰ)根据已知条件建立空间直角坐标系,求向量
CD
DQ
PQ
的坐标,求
PQ
CD
PQ
DQ
,从而判断出
PQ
CD
PQ
DQ
,这样即可证明PQ⊥平面DCQ,这样便可证明平面PQC⊥平面DCQ;
(Ⅱ)根据平面的法向量和平面内两向量垂直,求出平面BPC和平面QBP的法向量,根据这两法向量的夹角的余弦值求出这两平面夹角的余弦值.
解答: 解:(Ⅰ)证明:由已知条件知,DA,DP,DC三条直线两两垂直,∴如图,分别以DA,DP,DC所在直线为x轴,y轴,z轴建立D-xyz空间直角坐标系,则可确定以下几点坐标:Q(1,1,0),C(0,0,1),P(0,2,0),D(0,0,0);
DQ
=(1,1,0),
DC
=(0,0,1),
PQ
=(1,-1,0)

PQ
DQ
=0,
PQ
DC
=0
,∴
PQ
DQ
PQ
DC
即PQ⊥DQ,PQ⊥DC,DQ∩DC=D;
∴PQ⊥平面DCQ,又PQ?平面PQC;
∴平面PQC⊥平面DCQ;
(Ⅱ)依题意知:B(1,0,1),∴
CB
=(1,0,0),
BP
=(-1,2,-1)

n
=(x,y,z)
是平面BPC的法向量,则
n
CB
=0
n
BP
=0
,即
x=0
-x+2y-z=0
,解得
x=0
z=2y

∴可取
n
=(0,1,2)

同样,设
m
=(x,y,z)
是平面QBP的法向量,则:
m
BP
=0
m
PQ
=0
,即
-x+2y-z=0
x-y=0
,解得
x=z
y=z

∴取
m
=(1,1,1)

∴设平面QBP与平面BPC的夹角为θ,则cosθ=
m
n
|
m
||
n
|
=
3
5
3
=
15
5
点评:考查建立空间直角坐标系,用向量的方法证明面面垂直,求两平面夹角的方法,向量的数量积,及向量垂直的充要条件,平面法向量的概念,线面垂直的判定定理,面面垂直的判定定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆的中心为原点O,一焦点为F(3,0),过焦点F引垂直于长轴的弦MN,已知从中心O看弦MN的视角等于从长轴端点看短轴的视角,求此椭圆的离心率和椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,点(n,
Sn
n
)(n∈N*)均在直线y=x+1上.
(1)求数列{an}的通项公式;
(2)设bn=3an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某苗木公司要为一小区种植三棵景观树,有甲、乙两种方案.
甲方案:若第一年种植后全部成活,小区全额付款8千元;若第一年成活率不足
1
2
,终止合作,小区不付任何款项;若成活率超过
1
2
,但没有全成活,第二年公司将对没有成活的树补种,若补种的树全部成活,小区付款8千元,否则终止合作,小区付给公司2千元.
乙方案:只种树不保证成活,每棵树小区付给公司1.3千元.苗木公司种植每棵树的成本为1千元,这种树的成活率为
2
3

(Ⅰ)若实行甲方案,求小区给苗木公司付款的概率;
(Ⅱ)公司从获得更大利润考虑,应选择那种方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+Φ)(ω>0,0≤Φ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.
(1)求f(x)的解析式;  
(2)若sinα+f(α)=
2
3
,求
2
sin(2α-
π
4
)+1
1+tanα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a,第二次出现的点数为b.设复数z=a+bi.
(1)求事件“z-3i为实数”的概率;
(2)求事件“|Z-2|≤3”有多少种不同的情况,并加以说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系中,菱形ABCD的两个顶点C,D的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD以每秒1个单位的速度向终点D运动,点Q沿折线CBA以每秒2个单位的速度向终点A运动,设运动时间为t秒.
(1)填空:菱形ABCD的边长是
 
,面积是
 

(2)探究下列问题:
①当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,并求出S的最大值;
②在点P和点Q的运动过程中,△APQ能否成为等腰三角形,若能,请直接写出t的值,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,E、F是四边形ABCD的对角线AC上的两点,AE=CF,BE=DF,BE∥DF,AD=DC求证:四边形ABCD是菱形.

查看答案和解析>>

科目:高中数学 来源: 题型:

用红黄蓝三种颜色给如图所示的六连圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案共有
 

查看答案和解析>>

同步练习册答案