精英家教网 > 高中数学 > 题目详情
如图,E、F是四边形ABCD的对角线AC上的两点,AE=CF,BE=DF,BE∥DF,AD=DC求证:四边形ABCD是菱形.
考点:平行线分线段成比例定理
专题:选作题,立体几何
分析:因为AE=CF,DF=BE,DF∥BE,所以可根据SAS判定△ADF≌△CBE,即有AD=BC,AD∥BC,故可根据一组对边平行且相等的四边形是平行四边形进行判定,即可得出结论..
解答: 证明:∵DF∥BE
∴∠DFA=∠BEC
∵CF=AE,EF=EF
∴AF=CE
在△ADF和△CBE中,
∵DF=BE,∠DFE=∠BEF,AF=EC
∴△ADF≌△CBE(SAS)
∴AD=BC
∴∠DAC=∠BCA
∴AD∥BC
∴四边形ABCD是平行四边形.
∵AD=DC,
∴四边形ABCD是菱形.
点评:此题主要考查平行四边形的判定以及全等三角形的判定.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,等腰梯形ABCD中,AB∥CD,AD=CB,对角线AC与BD交于O,∠ACD=60°,点S、P、Q分别是OD、OA、BC的中点.
(1)求证:△PQS是等边三角形;
(2)若AB=8,CD=6,求△PQS的面积;
(3)若△PQS与△AOD的面积比为4:5,求CD:AB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
1
2
PD.
(Ⅰ)证明:平面PQC⊥平面DCQ;
(Ⅱ)求平面QBP与平面BPC的夹角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:若g(x)=x2+ax+b,则g(
x1+x2
2
)≤
g(x1)+g(x2)
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设z为虚数,且z+
1
z
+1=0.
(1)求z;
(2)求z+z2+z3+…+z2013的值;
(3)若复数z所对应的点在第二象限,w∈C,且1≤|w-4z|≤2,求|w|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体OPRS-ABCD中,底面ABCD边长为2,M为OA的中点.
(Ⅰ)求异面直线OC与MD所成角的正切值;
(Ⅱ)求点M到平面OCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ) 已知数列{an}的前n项和Sn=-2n2+n-2,求{an}的通项公式.
(Ⅱ) 电脑的价格大约每3年下降
2
3
,那么今年花8100元买的一台电脑,9年后的价格大约为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,求
cos2α+sin4α
1+cos2α+cos4a

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b∈R,且4≤a2+b2≤9,则a2-ab+b2的最小值是
 

查看答案和解析>>

同步练习册答案