【题目】已知点
,点
是直线
上的动点,过
作直线
,
,线段
的垂直平分线与
交于点
.
(1)求点
的轨迹
的方程;
(2)若点
是直线
上两个不同的点,且
的内切圆方程为
,直线
的斜率为
,求
的取值范围.
【答案】(1)
;(2)
.
【解析】试题分析:(1)利用抛物线定义求解即可;
(2)设出
的三个顶点的坐标,表示出
的解析式,化简之后可得
为关于
的方程
的两根,然后由韦达定理表示
的长度,最后在
中消去参数
,故可以得到
的取值范围.
试题解析: (1)据题设分析知,点
的轨迹
是以点
为焦点,直线
为准线的抛物线,所以曲线
的方程为
.
(2)设
,点
,点
,
直线
的方程为
,
化简,得
,
又因为
内切圆的方程为
.
所以圆心
到直线
的距离为1,即
,
所以
,
由题意,得
,所以
.
同理,有
,
所以
是关于
的方程
的两根,
所以
因为
所以
.
因为
,
所以
.
直线
的斜率
,则
,
所以
.
因为函数
在
上单调递增,所以当
时,
,
所以
,所以
,
所以
.所以
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布
.
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在
之外的零件数,求
;
(2)一天内抽检零件中,如果出现了尺寸在
之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
下面是检验员在一天内抽取的16个零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得
,
,其中
为抽取的第
个零件的尺寸,
.
用样本平均数
作为
的估计值
,用样本标准差
作为
的估计值
,利用估计值判断是否需对当天的生产过程进行检查?剔除
之外的数据,用剩下的数据估计
和
(精确到0.01).
附:若随机变量
服从正态分布
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】语文成绩服从正态分布
,数学成绩的频率分布直方图如下:
![]()
(Ⅰ)如果成绩大于135的为特别优秀,这500名学生中本次考试语文、数学特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)
(Ⅱ)如果语文和数学两科都特别优秀的共有6人,从(Ⅰ)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有
人,求
的分布列和数学期望.
(附参考公式)若
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的
城市和交通拥堵严重的
城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图(如图所示):
![]()
若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此
列联表,并据此样本分析是否有
的把握认为城市拥堵与认可共享单车有关:
|
| 合计 | |
认可 | |||
不认可 | |||
合计 |
附:参考数据:(参考公式:
)
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数),
是
的导函数.
(Ⅰ)当
时,求证
;
(Ⅱ)是否存在正整数
,使得
对一切
恒成立?若存在,求出
的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
为椭圆
的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线
与椭圆
有且仅有一个交点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与
轴交于
,过点
的直线与椭圆
交于两不同点
,
,若
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在测试中,客观题难度的计算公式为
,其中
为第
题的难度,
为答对该题的人数,
为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:
题号 | 1 | 2 | 3 | 4 | 5 |
考前预估难度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):
| 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(Ⅰ)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;
题号 | 1 | 2 | 3 | 4 | 5 |
实测答对人数 | |||||
实测难度 |
(Ⅱ)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;
(Ⅲ)定义统计量
,其中
为第
题的实测难度,
为第
题的预估难度
.规定:若
,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com