精英家教网 > 高中数学 > 题目详情
15.数列1,37,314,321,…中,398是这个数列的(  )
A.第15项B.第14项C.第13项D.不在此数列中

分析 推导出an=37n-7,由此能求出结果.

解答 解:数列1,37,314,321,…中,
an=37n-7
由7n-7=98,得n=15,
∴398是这个数列的第15项.
故选:A.

点评 本题考查一个数是等差数列的第几项的判断与求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点F(-c,0)(c>0),作圆x2+y2=$\frac{a^2}{4}$的切线,切点为E,延长FE交双曲线右支于点P,若$\overrightarrow{OP}=2\overrightarrow{OE}-\overrightarrow{OF}$,则双曲线的离心率为(  )
A.$\sqrt{10}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{{\sqrt{10}}}{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=xex+f′(0),则曲线y=f(x)在x=1处的切线方程是y=2ex-e+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\frac{1}{3}$x3+$\frac{a-1}{2}$x2+ax+a(a∈R)的导数为f'(x),若对任意的x∈[2,3]都有f'(x)≤f(x),则a的取值范围是(  )
A.$[{\frac{2}{3},+∞})$B.$[{1,\frac{5}{3}}]$C.$[{\frac{1}{3},+∞})$D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知命题p:?x∈R,ax2+2ax+1≤0.若命题¬p是真命题,则实数a的取值范围是[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下列联表:
 总计
看营养说明503080
不看营养说明102030
总计6050110
(1)从这50名女生中按是否看营养说明分层抽样,抽取一个容量为5的样本,问样本中看与不看营养说明的女生各有多少名?
(2)从(1)中的5名女生中随机选取2名进行深度访谈,求选到看与不看营养说明的女生各1名的概率;
(3)根据以上列联表,问能否在犯错误的概率不超过0.010的前提下认为“性别与在购买食物时看营养说明有关系”?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\frac{{\sqrt{x+1}}}{x}$则函数的定义域为{x|x≥-1且x≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a=(3,2),\overrightarrow b=(0,-1)$,则$-2\overrightarrow a+3\overrightarrow b$的坐标是(  )
A.(-6,7)B.(-6,-7)C.(-6,1)D.(-6,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数$f(x)=\left\{\begin{array}{l}{e^{1-x}},x≤1\\ ln({x-1}),x>1\end{array}\right.$,则使得f(x)≥2成立的x的取值范围是(-∞,1-ln2]∪[1+e2,+∞).

查看答案和解析>>

同步练习册答案