精英家教网 > 高中数学 > 题目详情
7.已知函数$f(x)=\frac{{\sqrt{x+1}}}{x}$则函数的定义域为{x|x≥-1且x≠0}.

分析 由根式内部的代数式大于等于0,分式的分母不为0联立不等式组求解.

解答 解:由$\left\{\begin{array}{l}{x+1≥0}\\{x≠0}\end{array}\right.$,解得x≥-1且x≠0.
∴函数$f(x)=\frac{{\sqrt{x+1}}}{x}$的定义域为{x|x≥-1且x≠0}.
故答案为:{x|x≥-1且x≠0}.

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若直线(a+1)x-y+1-2a=0与(a2-1)x+(a-1)y-15=0平行,则实数a的值等于(  )
A.1或-1B.1C.-1D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$|\overrightarrow a|=3$,与$\overrightarrow a$共线的单位向量为±$\frac{\overrightarrow{a}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.数列1,37,314,321,…中,398是这个数列的(  )
A.第15项B.第14项C.第13项D.不在此数列中

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等比数列{an}中,若a5+a6+a7+a8=15,a6a7=-5,$\frac{1}{a_5}+\frac{1}{a_6}+\frac{1}{a_7}+\frac{1}{a_8}$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若偶函数f(x)在(-∞,0]上单调递减,a=log23,b=log45,$c={2^{\frac{3}{2}}}$,则f(a),f(b),f(c)满足(  )
A.f(a)<f(b)<f(c)B.f(b)<f(a)<f(c)C.f(c)<f(a)<f(b)D.f(c)<f(b)<f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)的=x+$\frac{a}{x}$图象过点A(2,$\frac{5}{2}$).
(I)求实数a的值,并证明f(x)的图象关于原点对称;
(Ⅱ)证明函数f(x)在(0,1)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知正项等比数列{an}的前n项和为Sn,且a2a3=a5,S4=10S2
(1)求数列{an}的通项公式;
(2)设bn=(2n-1)an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=ex•sinx+ax,x∈[0,2π](a为常数).
(1)当a=0时,求f(x)的单调区间;
(2)若f(x)在区间(0.2π)的极大值、极小值各有一个,求实数a的取值范围.

查看答案和解析>>

同步练习册答案