分析 (1)正项等比数列{an}的公比设为q,运用等比数列的通项公式,解方程可得首项和公比,进而得到所求通项;
(2)bn=(2n-1)an=(2n-1)•3n,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理,即可得到所求和.
解答 解:(1)正项等比数列{an}的公比设为q,
由a2a3=a5,S4=10S2,
可得a12q3=a1q4,a1(1+q+q2+q3)=10a1(1+q),
解得a1=q=3,(q=1舍去),
则an=a1qn-1=3n;
(2)bn=(2n-1)an=(2n-1)•3n,
前n项和Tn=1•3+3•32+…+(2n-1)•3n,
3Tn=1•32+3•33+…+(2n-1)•3n+1,
相减可得-2Tn=1•3+2•(32+…+3n)-(2n-1)•3n+1
=3+2•$\frac{9(1-{3}^{n-1})}{1-3}$-(2n-1)•3n+1,
化简可得Tn=3+(n-1)•3n+1.
点评 本题考查等比数列的通项公式和求和公式的运用,考查数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-6,7) | B. | (-6,-7) | C. | (-6,1) | D. | (-6,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 性别 眼睛是否近视 | 男 | 女 |
| 近视 | 30 | 40 |
| 不近视 | 270 | 160 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com