精英家教网 > 高中数学 > 题目详情
16.已知正项等比数列{an}的前n项和为Sn,且a2a3=a5,S4=10S2
(1)求数列{an}的通项公式;
(2)设bn=(2n-1)an,求数列{bn}的前n项和Tn

分析 (1)正项等比数列{an}的公比设为q,运用等比数列的通项公式,解方程可得首项和公比,进而得到所求通项;
(2)bn=(2n-1)an=(2n-1)•3n,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理,即可得到所求和.

解答 解:(1)正项等比数列{an}的公比设为q,
由a2a3=a5,S4=10S2
可得a12q3=a1q4,a1(1+q+q2+q3)=10a1(1+q),
解得a1=q=3,(q=1舍去),
则an=a1qn-1=3n
(2)bn=(2n-1)an=(2n-1)•3n
前n项和Tn=1•3+3•32+…+(2n-1)•3n
3Tn=1•32+3•33+…+(2n-1)•3n+1
相减可得-2Tn=1•3+2•(32+…+3n)-(2n-1)•3n+1
=3+2•$\frac{9(1-{3}^{n-1})}{1-3}$-(2n-1)•3n+1
化简可得Tn=3+(n-1)•3n+1

点评 本题考查等比数列的通项公式和求和公式的运用,考查数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=xex+f′(0),则曲线y=f(x)在x=1处的切线方程是y=2ex-e+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\frac{{\sqrt{x+1}}}{x}$则函数的定义域为{x|x≥-1且x≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a=(3,2),\overrightarrow b=(0,-1)$,则$-2\overrightarrow a+3\overrightarrow b$的坐标是(  )
A.(-6,7)B.(-6,-7)C.(-6,1)D.(-6,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.(cos2x)′=(  )
A.sin2xB.-sin2xC.2sin2xD.-2sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若f(x)=$\left\{\begin{array}{l}sinx,0≤x≤π\\ cosx,-π≤x≤0.\end{array}$则$\int{\begin{array}{l}π\\{-π}\end{array}}$f(x)dx=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.求两直线l1:3x+4y-2=0与l2:2x+y+2=0的交点坐标(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数$f(x)=\left\{\begin{array}{l}{e^{1-x}},x≤1\\ ln({x-1}),x>1\end{array}\right.$,则使得f(x)≥2成立的x的取值范围是(-∞,1-ln2]∪[1+e2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为调查某地区中学毕业生的眼睛近视情况,用简单随机抽样方法从该地区调查了500名中学生,结果如下:
                   性别
眼睛是否近视
近视3040
不近视270160
(Ⅰ)估计该地区中学生中,眼睛近视学生的比例.
(Ⅱ)能否有99.5%的把握认为该地区的中学生眼睛近视与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查方法来估计该地区的中学生中,眼睛近视学生的比例?说明理由.
(参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.)
参考值表:
 P(K2≥k00.150.100.050.0250.0100.0050.001
 k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案