精英家教网 > 高中数学 > 题目详情
定义域为R的函数f(x)对任意x∈R都有f(x)=f(4-x),且其导函数f′(x)满足(x-2)f′(x)>0,则当2<a<4时,有(  )
分析:先根据条件求出函数的对称轴,再求出函数的单调区间,然后判定2、log2a、2a的大小关系,根据单调性即可得出结论.
解答:解:∵函数f(x)对任意x∈R都有f(x)=f(4-x),
∴函数f(x)对任意x都有f(2+x)=f(2-x),
∴函数f(x)的对称轴为x=2
∵导函数f′(x)满足(x-2)f′(x)>0,
∴函数f(x)在(2,+∞)上单调递增,(-∞,2)上单调递减
∵2<a<4
∴4<2a<16
∵函数f(x)的对称轴为x=2
∴f(log2a)=f(4-log2a)
∵2<a<4,∴1<log2a<2
∴2<4-log2a<3
∴2<4-log2a<2a
∴f(2)<f(4-log2a)<f(2a),
∴f(2)<f(log2a)<f(2a),
故选C
点评:本题考查利用导数确定函数的单调性,考查利用单调性比较大小,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
b-
2
x
 
2
x+1
 
+a
是奇函数
(1)a+b=
3
3

(2)若函数g(x)=f(
2x+1
)+f(k-x)
有两个零点,则k的取值范围是
(-1,-
1
2
(-1,-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+b2x+1+a
是奇函数.
(1)求f(x)的解析式;
(2)用定义证明f(x)为R上的减函数;
(3)若对任意的t∈[-1,1],不等式f(2k-4t)+f(3•2t-k-1)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+12x+1+a
是奇函数,则a=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)=
1
|x-2|
,(x≠2)
1,(x=2)
,若关于x的方程f2(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则x1+x2+x3+x4+x5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数.
(Ⅰ)求实数a值;
(Ⅱ)判断并证明该函数在定义域R上的单调性.

查看答案和解析>>

同步练习册答案