精英家教网 > 高中数学 > 题目详情
11.在半径为10cm的球面上有A,B,C三点,如果AB=8$\sqrt{3}$,∠ACB=60°,则球心O到平面ABC的距离为(  )
A.2cmB.4cmC.6cmD.8cm

分析 设A、B、C三点所在圆的半径为r,在△ABC中,由正弦定理可求得其外接圆的直径,由此几何体的结构特征知,用勾股定理求球心O到平面ABC的距离即可.

解答 解:设A、B、C三点所在圆的半径为r,由题意在△ABC中,AB=8$\sqrt{3}$cm,∠ACB=60°,
由正弦定理可求得其外接圆的直径为$\frac{8\sqrt{3}}{sin60°}$=16,即半径为r=8cm
 又球心在面ABC上的射影是△ABC外心,
故球心到面的距离,求的半径、三角形外接圆的半径三者构成了一个直角三角形
 设球面距为d,球半径为10cm,
故有d2=102-82=36,
解得d=6cm.
故选C.

点评 本题考点是点、线、面间的距离的计算,考查球中球面距的计算,此类问题建立方程的通常是根据由球面距、球半径、截面圆的半径三者构成的直角三角形,由勾股定理建立函数模型求值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=$\sqrt{2}$,设E、F分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)求证:平面PAB⊥平面PCD;
(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任意一点到两个焦点的距离之和为4,且离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)设椭圆的右焦点为F,是否存在直线l,使得直线l与椭圆C相交于A,B两点,满足两个条件:①线段AB的中点P在直线x+2y=0上;②△FAB的面积有最大值.如果存在,请求出面积的最大值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设△ABC的内角A,B,C所对的边长分别为a,b,c,且sin2A+sin2B+sin2C=$\frac{1}{2}$,面积S∈[1,2],则下列不等式一定成立的是(  )
A.(a+b)>16$\sqrt{2}$B.bc(b+c)>8C.6≤abc≤12D.12≤abc≤24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,P为椭圆上异于A1,A2的点,PA1和PA2的斜率之积为-$\frac{3}{4}$.
(1)求椭圆C的标准方程;
(2)设O为椭圆中心,M,N是椭圆上异于顶点的两个动点,求△MON面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个平面内的8个点,若只有4个点共圆,其余任何4点不共圆,那么这8个点最多确定的圆的个数为(  )
A.${C}_{4}^{3}$•${C}_{4}^{4}$B.${C}_{8}^{3}$-${C}_{4}^{3}$C.2${C}_{4}^{1}$•${C}_{4}^{2}$+${C}_{4}^{3}$D.${C}_{8}^{3}$-${C}_{4}^{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,AB=AC,AC边上的中线长为9,当△ABC的面积最大时,AB的长为(  )
A.9$\sqrt{3}$B.9$\sqrt{5}$C.6$\sqrt{3}$D.6$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=xlnx,g(x)=x3+ax2-2x+3.
(1)如果函数g(x)的单调递减区间为(-1,$\frac{2}{3}$),求函数y=g(x)的图象在点P(-$\frac{1}{2}$,g(-$\frac{1}{2}$))处的切线方程;
(2)若不等式2f(x)≤g′(x)+3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥A-DCBE中,AC⊥BC,底面DCBE为平行四边形,DC⊥平面ABC.
(Ⅰ)求证:DE⊥平面ACD; 
(Ⅱ)若∠ABC=30°,AB=2,EB=$\sqrt{3}$,求三棱锥B-ACE的体积;
(Ⅲ)设平面ADE∩平面ABC=直线l,求证:BC∥l.

查看答案和解析>>

同步练习册答案