| A. | 9$\sqrt{3}$ | B. | 9$\sqrt{5}$ | C. | 6$\sqrt{3}$ | D. | 6$\sqrt{5}$ |
分析 设AB=AC=2x,三角形的顶角θ,则由余弦定理求得cosθ的表达式,进而根据同角三角函数基本关系求得sinθ,最后根据三角形面积公式表示出三角形面积的表达式,根据一元二次函数的性质求得面积的最大值,求出x即可.
解答
解:设AB=AC=2x,AD=x.
设三角形的顶角θ,则由余弦定理得cosθ=$\frac{({2x)}^{2}+{x}^{2}-81}{2×2x•x}$=$\frac{5{x}^{2}-81}{4{x}^{2}}$,
∴sinθ=$\sqrt{1-{cos}^{2}θ}$=$\sqrt{1-{(\frac{5{x}^{2}-81}{4{x}^{2}})}^{2}}$=$\sqrt{\frac{-9{x}^{4}+810{x}^{2}-{81}^{2}}{({4{x}^{2})}^{2}}}$=$\frac{3\sqrt{-({{x}^{2}-45)}^{2}+{45}^{2}-729}}{4{x}^{2}}$,
根据公式三角形面积S=$\frac{1}{2}$absinθ=$\frac{1}{2}$×2x•2x•$\frac{3\sqrt{-{({x}^{2}-45)}^{2}+{45}^{2}-729}}{4{x}^{2}}$=$\frac{3\sqrt{-{({x}^{2}-45)}^{2}+{45}^{2}-729}}{2}$,
∴当 x2=45时,三角形面积有最大值.此时x=3$\sqrt{5}$.
AB的长:6$\sqrt{5}$.
故选:D.
点评 本题主要考查函数最值的应用,根据条件设出变量,根据三角形的面积公式以及三角函数的关系是解决本题的关键,利用二次函数的性质即可求出函数的最值,考查学生的运算能力.运算量较大.
科目:高中数学 来源: 题型:选择题
| A. | f(x)•g(x)是奇函数 | B. | f(x)•g(x)是偶函数 | C. | f(x)+g(x)是奇函数 | D. | f(x)+g(x)是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2cm | B. | 4cm | C. | 6cm | D. | 8cm |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com