精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=x-2,g(x)=x3+tanx,那么(  )
A.f(x)•g(x)是奇函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)+g(x)是偶函数

分析 根据函数奇偶性的定义进行判断即可.

解答 解:函数f(x)•g(x)=x-2(x3+tanx),函数的定义域为{x|x≠0且x≠kπ+$\frac{π}{2}$},
则f(-x)•g(-x)=x-2(-x3-tanx)=-x-2(x3+tanx)=-f(x)•g(x),则f(x)•g(x)是奇函数.
函数f(x)+g(x)=x-2+(x3+tanx),函数的定义域为{x|x≠0且x≠kπ+$\frac{π}{2}$},
f(-x)+g(-x)=x-2-x3-tanx≠-f(x)•g(x),f(-x)+g(-x)≠f(x)+g(x),
即f(x)+g(x)是非奇非偶函数,
故选:A

点评 本题主要考查函数的奇偶性的判断,根据定义是解决本题的关键.注意要先判断定义域是否关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|x+a|+|x+3|,
(1)若不等式f(x)≤8有解,求a的取值范围;
(2)不等式f(x)>|a-2|对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若a,b是非零实数,m=$\frac{a}{|a|}$+$\frac{ab}{|ab|}$-$\frac{|b|}{b}$,则m所有取值的集合为(  )
A.{-3,1}B.{-3,1,3}C.{-2,1,3}D.{-3,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任意一点到两个焦点的距离之和为4,且离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)设椭圆的右焦点为F,是否存在直线l,使得直线l与椭圆C相交于A,B两点,满足两个条件:①线段AB的中点P在直线x+2y=0上;②△FAB的面积有最大值.如果存在,请求出面积的最大值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的各项均为正数,其前n项和为Sn,且满足a1=1,an+1=2$\sqrt{{S}_{n}}$+1,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)是否存在正整数k,使ak,S2k-1,a4k成等比数列?若存在,求k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设△ABC的内角A,B,C所对的边长分别为a,b,c,且sin2A+sin2B+sin2C=$\frac{1}{2}$,面积S∈[1,2],则下列不等式一定成立的是(  )
A.(a+b)>16$\sqrt{2}$B.bc(b+c)>8C.6≤abc≤12D.12≤abc≤24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,P为椭圆上异于A1,A2的点,PA1和PA2的斜率之积为-$\frac{3}{4}$.
(1)求椭圆C的标准方程;
(2)设O为椭圆中心,M,N是椭圆上异于顶点的两个动点,求△MON面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,AB=AC,AC边上的中线长为9,当△ABC的面积最大时,AB的长为(  )
A.9$\sqrt{3}$B.9$\sqrt{5}$C.6$\sqrt{3}$D.6$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解不等式(x-1)3(x+2)(2x-1)2(x-4)≥0.

查看答案和解析>>

同步练习册答案