分析 f(x)=|x+a|+|x+3|≥|x+a-x-3|=|a-3|,
(1)不等式f(x)≤8有解,所以|a-3|≤8,可得a的取值范围;
(2)不等式f(x)>|a-2|对任意x∈R恒成立,可得|a-3|>|a-2|,即可求出a的取值范围.
解答 解:(1)因为f(x)=|x+a|+|x+3|≥|x+a-x-3|=|a-3|,不等式f(x)≤8有解,
所以|a-3|≤8,
所以-5≤a≤11;
(2)由(1)知,不等式f(x)>|a-2|对任意x∈R恒成立,
则|a-3|>|a-2|,
所以a<2.5.
点评 本题考查绝对值不等式,考查学生的计算能力,求出f(x)=|x+a|+|x+3|≥|x+a-x-3|=|a-3|,正确转化是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -2 | C. | 0 | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)•g(x)是奇函数 | B. | f(x)•g(x)是偶函数 | C. | f(x)+g(x)是奇函数 | D. | f(x)+g(x)是偶函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com