精英家教网 > 高中数学 > 题目详情
13.正三棱锥的底面边长为2,高为1,此三棱锥的体积为$\frac{\sqrt{3}}{3}$.

分析 运用三棱锥的体积公式求解即可.

解答 解:∵一个正三棱锥的底面边长2,高为1,
∴这个正三棱锥的体积为V=$\frac{1}{3}×\frac{\sqrt{3}}{4}×{2}^{2}×1$=$\frac{\sqrt{3}}{3}$,
故答案为:$\frac{\sqrt{3}}{3}$.

点评 本题考查了空间几何体的体积公式,属于计算题,难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则该几何体的体积是(  )
A.2B.$\frac{8}{3}$C.4D.$\frac{20}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|x+a|+|x+3|,
(1)若不等式f(x)≤8有解,求a的取值范围;
(2)不等式f(x)>|a-2|对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=$\sqrt{2}$,设E、F分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)求证:平面PAB⊥平面PCD;
(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,边长为4的正方形ABCD中,点E,F分别是AB,BC上的点,将△AED和△DCF折起,使A,C两点重合于P.

(1)求证:PD⊥EF;
(2)当BE=BF=$\frac{1}{4}$BC时,求四棱锥P-BEDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足a1=$\frac{1}{4}$,(1-an)an+1=$\frac{1}{4}$.令bn=an-$\frac{1}{2}$.
(Ⅰ)求证:数列$\left\{{\frac{1}{b_n}}\right\}$为等差数列;
(Ⅱ)求证:$\frac{a_2}{a_1}+\frac{a_3}{a_2}+…+\frac{{{a_{n+1}}}}{a_n}<n+\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若a,b是非零实数,m=$\frac{a}{|a|}$+$\frac{ab}{|ab|}$-$\frac{|b|}{b}$,则m所有取值的集合为(  )
A.{-3,1}B.{-3,1,3}C.{-2,1,3}D.{-3,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任意一点到两个焦点的距离之和为4,且离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)设椭圆的右焦点为F,是否存在直线l,使得直线l与椭圆C相交于A,B两点,满足两个条件:①线段AB的中点P在直线x+2y=0上;②△FAB的面积有最大值.如果存在,请求出面积的最大值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,AB=AC,AC边上的中线长为9,当△ABC的面积最大时,AB的长为(  )
A.9$\sqrt{3}$B.9$\sqrt{5}$C.6$\sqrt{3}$D.6$\sqrt{5}$

查看答案和解析>>

同步练习册答案