精英家教网 > 高中数学 > 题目详情
10.已知抛物线C:y2=2px(p>0)与直线l:x=4交于A,B两点,若△OAB的面积为32,则抛物线C的准线方程为(  )
A.x=-$\sqrt{2}$B.x=-4C.x=-1D.x=-8

分析 利用△OAB的面积为32,建立方程,即可求出抛物线C的准线方程.

解答 解:由题意,x=4,y=±$\sqrt{8p}$,
∵△OAB的面积为32,
∴$\frac{1}{2}×4×2\sqrt{8p}$=32,
∴p=8,
∴抛物线C的准线方程为x=-4,
故选B.

点评 本题考查抛物线C的准线方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,如图是乙流水线样本的频率分布直方图.
甲流水线样本的频数分布表
质量指标值频数
(190,195]9
(195,200]10
(200,205]17
(205,210]8
(210,215]6
(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两
条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这
种产品的质量指标值与甲,乙两条流水线的选择有关”?
甲生产线乙生产线合计
合格品
不合格品
合计
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d为样本容量)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若数据x1,x2,…,xn的平均值为$\overline x$,方差为S2,则3x1+5,3x2+5,…,3xn+5的平均值和方差分别为(  )
A.$\overline{x}$和S2B.3$\overline{x}$+5和9S2C.3$\overline{x}$+5和S2D.$\overline{x}$和9S2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.运行如图的程序,输出的结果是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\frac{1}{a}<\frac{1}{b}<0$,则下列不等式中,正确的不等式有(  )
A.a+b>abB.|a|>|b|C.a<bD.$\frac{b}{a}+\frac{a}{b}>2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,半圆的直径AB=4,O为圆心,C为半圆上不同A,B的任意一点,若P为半径OC上的动点,则($\overrightarrow{PA}+\overline{PB}$)•$\overline{PC}$的最小值等于(  )
A.2B.-1C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,三边a,b,c与面积S的关系式为S=$\frac{{\sqrt{3}}}{12}({b^2}+{c^2}-{a^2})$,则角A等于(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q的必要条件,求实数m的取值范围
(2)若m=2,¬p∨¬q为假,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=4tanxsin($\frac{π}{2}$-x)cos(x-$\frac{π}{3}$)-$\sqrt{3}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在[-$\frac{π}{4}$,$\frac{π}{4}$]上的单调递增区间.

查看答案和解析>>

同步练习册答案