精英家教网 > 高中数学 > 题目详情

【题目】设双曲线与椭圆 =1有相同的焦点,且与椭圆相交,一个交点A的纵坐标为4,求:
(1)双曲线的标准方程.
(2)若直线L过A(﹣1,2),且与双曲线渐近线y=kx(k>0)垂直,求直线L的方程.

【答案】
(1)解:椭圆 =1的焦点为(0,3),(0,﹣3),

交点A的纵坐标为4,可得A(± ,4),

设双曲线的方程为 =1(a,b>0),

由题意可得a2+b2=9, =1,

解得a=2,b=

则双曲线的方程为 =1


(2)解:双曲线 =1的渐近线方程为y=± x,

由题意可得k=

则直线l的斜率为﹣ =﹣

即有直线l的方程为y﹣2=﹣ (x+1),

即为 x+2y+ ﹣4=0


【解析】(1)求得椭圆的焦点,求得A的坐标,设出双曲线的方程,由题意可得a2+b2=9, =1,解得a,b,即可得到所求方程;(2)求得双曲线的渐近线方程,可得k,由两直线垂直的条件:斜率之积为﹣1,以及点斜式方程即可得到所求方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c= ,cosA=﹣
(1)求sinC和b的值;
(2)求cos(2A+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 为线段的中点.

(Ⅰ)求证:

(Ⅱ)若直线与平面所成角的正弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱ABC﹣A1B1C1的侧面AA1C1C为正方形,侧面AA1B1B⊥侧面BB1C1C,且AC=2,AB= ,∠A1AB=45°,E、F分别为AA1、CC1的中点.

(1)求证:AA1⊥平面BEF;
(2)求二面角B﹣EB1﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

(Ⅰ)若函数处有极小值,求的值;

(Ⅱ)若,设,求证:当时,

(Ⅲ)若,对于给定,其中,若.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 )的左右焦点分别为 ,下顶点为,直线的方程为.

(Ⅰ)求椭圆的离心率;

(Ⅱ)设为椭圆上异于其顶点的一点, 到直线的距离为,且三角形的面积为.

(1)求椭圆的方程;

(2)若斜率为的直线与椭圆相切,过焦点 分别作 ,垂足分别为 ,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二年级学生会有理科生4名,其中3名男同学;文科生3名,其中有1名男同学.从这7名成员中随机抽4人参加高中示范校验收活动问卷调查.

(Ⅰ)设为事件“选出的4人中既有文科生又有理科生”,求事件的概率;

(Ⅱ)设为选出的4人中男生人数与女生人数差的绝对值,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣x+3. (Ⅰ)求f(x)在x=1处的切线方程;
(Ⅱ)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,以原点 为极点,以 轴正半轴为极轴,建立极坐标系,曲线 的极坐标方程为 ,曲线 的参数方程为
(1)求曲线 的直角坐标方程与曲线 的普通方程;
(2)试判断曲线 是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.

查看答案和解析>>

同步练习册答案