【题目】设函数,其中.
(Ⅰ)若函数在处有极小值,求的值;
(Ⅱ)若,设,求证:当时, ;
(Ⅲ)若,对于给定,其中,若.求的取值范围.
【答案】(Ⅰ) ;(Ⅱ)证明见解析;(Ⅲ) .
【解析】试题分析:
(Ⅰ)由题意得到关于实数的方程组,求解方程组可得;
(Ⅱ)首先确定函数取得最值时自变量的位置,然后结合题意进行证明即可得出结论;
(Ⅲ)由题意分类讨论可得的取值范围是.
试题解析:
(Ⅰ) ,由已知的,
解得或.
当时, 是极小值
当时, 是极大值,故舍去
所以
(Ⅱ)
因为,所以函数的对称轴位于区间之外,
于是, 在上的最大值在两端点处取得,
即.
于是=≥,
故.
(Ⅲ)
所以,当时, ,所以在上单调递减.
①当时, ,
,
,
因为在上单调递减,所以,
且.
因此, 成立, 符合题意.
②当时, ,
,
于是
所以成立, 不符合题意
③时, ,
,
.
所以不符合题意.
综上, .
科目:高中数学 来源: 题型:
【题目】设A,B为曲线C:y=上两点,A与B的横坐标之和为4.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点, 到抛物线的准线的距离为.
(I)求椭圆的方程和抛物线的方程;
(II)设上两点, 关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线y=x2+mx–2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设双曲线与椭圆 =1有相同的焦点,且与椭圆相交,一个交点A的纵坐标为4,求:
(1)双曲线的标准方程.
(2)若直线L过A(﹣1,2),且与双曲线渐近线y=kx(k>0)垂直,求直线L的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的离心率为,圆心在轴的正半轴上的圆与双曲线的渐近线相切,且圆的半径为2,则以圆的圆心为焦点的抛物线的标准方程为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在x∈[ ,2]上,函数f(x)=x2+px+q与g(x)= + 在同一点取得相同的最小值,那么f(x)在x∈[ ,2]上的最大值是( )
A.
B.4
C.8
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左、右焦点分别为F1、F2 , 短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明: 为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com