精英家教网 > 高中数学 > 题目详情

【题目】AB为曲线Cy=上两点,AB的横坐标之和为4.

(1)求直线AB的斜率;

(2)设M为曲线C上一点,CM处的切线与直线AB平行,且AMBM,求直线AB的方程.

【答案】(1)1(2)

【解析】试题分析:(1)由直线斜率公式可得AB的斜率,再根据AB的横坐标之和为4,得AB的斜率.(2)先根据导数几何意义得M点坐标,再根据直角三角形性质得,(AB的中点为N),设直线AB的方程为,与抛物线方程联立,利用两点间距离公式以及弦长公式可得关系式,解得.即得直线AB的方程为.

试题解析:解:(1)设Ax1y1),Bx2y2),则 x1+x2=4,

于是直线AB的斜率.

(2)由,得.

Mx3y3),由题设知,解得,于是M(2,1).

设直线AB的方程为,故线段AB的中点为N(2,2+m),|MN|=|m+1|.

代入.

,即时, .

从而.

由题设知,即,解得.

所以直线AB的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量,且函数.

)当函数上的最大值为3时,求的值;

)在()的条件下,若对任意的,函数的图像与直线有且仅有两个不同的交点,试确定的值.并求函数上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在区间[0,a]上的函数f(x)的图象如图所示,记以A(0,f(0)),B(a,f(a)),C(x,f(x))为顶点的三角形的面积为S(x),则函数S(x)的导函数S′(x)的图象大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边ABBC的长分别为a厘米和b厘米,其中ab

(1)当a=90时,求纸盒侧面积的最大值;

(2)试确定abx的值,使得纸盒的体积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一家公司计划生产某种小型产品的月固定成本为1万元,每生产1万件需要再投入2万元,设该公司一个月内生产该小型产品x万件并全部销售完,每万件的销售收入为4﹣x万元,且每万件国家给予补助2e﹣ 万元.(e为自然对数的底数,e是一个常数)
(1)写出月利润f(x)(万元)关于月产量x(万件)的函数解析式
(2)当月产量在[1,2e]万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生成量值(万件).(注:月利润=月销售收入+月国家补助﹣月总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于R上的可导函数f(x),若a>b>1且有(x﹣1)f′(x)≥0,则必有(
A.f(a)+f(b)<2f(1)
B.f(a)+f(b)≤2f(1)
C.f(a)+f(b)≥2f(1)
D.f(a)+f(b)>2f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+(1﹣a) x2﹣a(a+2)x+b(a,b∈R).
(1)若函数f(x)的图象过原点,且在原点处的切线斜率是﹣3,求a,b的值;
(2)若函数f(x)在区间(﹣1,1)上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游景区的景点A处和B处之间有两种到达方式,一种是沿直线步行,另一种是沿索道乘坐缆车,现有一名游客从A处出发,以50m/min的速度匀速步行,30min后到达B处,在B处停留20min后,再乘坐缆车回到A处.假设缆车匀速直线运动的速度为150m/mm.
(1)求该游客离景点A的距离y(m)关于出发后的时间x(mm)的函数解析式,并指出该函数的定义域;
(2)做出(1)中函数的图象,并求该游客离景点A的距离不小于1000m的总时长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项积为,即.

(1)若数列为首项为2016,公比为的等比数列,

①求的表达式;②当为何值时, 取得最大值;

(2)当时,数列都有成立,

求证: 为等比数列.

查看答案和解析>>

同步练习册答案