精英家教网 > 高中数学 > 题目详情

【题目】对于R上的可导函数f(x),若a>b>1且有(x﹣1)f′(x)≥0,则必有(
A.f(a)+f(b)<2f(1)
B.f(a)+f(b)≤2f(1)
C.f(a)+f(b)≥2f(1)
D.f(a)+f(b)>2f(1)

【答案】C
【解析】解:由(x﹣1)f′(x)≥0可以得知,
若(x﹣1)f′(x)>0,则有以下两种情况:
①当x>1时,有f′(x)>0;
②当x<1时,有f′(x)<0,
∴可以得知当x>1时,f(x)单调递增,当x<1时,f(x)单调递减,
∵a>b>1,
∴f(a)>f(b)>f(1)
∴f(a)+f(b)>2f(1),
而当(x﹣1)f′(x)=0时,可以得知,f(a)=f(b)=f(1),
∴f(a)+f(b)=2f(1),
综上,可得f(a)+f(b)≥2f(1),
故选:C.
【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下顶点分别为,且点 分别为椭圆的左、右焦点,且

(Ⅰ)求椭圆的标准方程;

(Ⅱ)是椭圆上异于 的任意一点,过点轴于 为线段

的中点.直线与直线交于点 为线段的中点, 为坐标原点.求

的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1底面四边形ABCD为菱形A1AAB2,∠ABCEF分别是BCA1C的中点

(1)求异面直线EFAD所成角的余弦值;

(2)点M在线段A1D上, .若CM∥平面AEF,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=loga(x+ )是奇函数,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB为曲线Cy=上两点,AB的横坐标之和为4.

(1)求直线AB的斜率;

(2)设M为曲线C上一点,CM处的切线与直线AB平行,且AMBM,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足Sn+an=2n+1.
(1)写出a1 , a2 , a3 , 并推测an的表达式;
(2)用数学归纳法证明所得的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax﹣lnx,x∈(0,e],g(x)= ,其中e是自然常数,a∈R.
(1)讨论a=1时,函数f(x)的单调性和极值;
(2)求证:在(1)的条件下,f(x)>g(x)+
(3)是否存在实数a使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)与函数有公共切线.

(Ⅰ)求的取值范围;

(Ⅱ)若不等式对于的一切值恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin2x的图象,只需把函数y=sin(2x﹣ )的图象(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

同步练习册答案