【题目】对于R上的可导函数f(x),若a>b>1且有(x﹣1)f′(x)≥0,则必有( )
A.f(a)+f(b)<2f(1)
B.f(a)+f(b)≤2f(1)
C.f(a)+f(b)≥2f(1)
D.f(a)+f(b)>2f(1)
【答案】C
【解析】解:由(x﹣1)f′(x)≥0可以得知,
若(x﹣1)f′(x)>0,则有以下两种情况:
①当x>1时,有f′(x)>0;
②当x<1时,有f′(x)<0,
∴可以得知当x>1时,f(x)单调递增,当x<1时,f(x)单调递减,
∵a>b>1,
∴f(a)>f(b)>f(1)
∴f(a)+f(b)>2f(1),
而当(x﹣1)f′(x)=0时,可以得知,f(a)=f(b)=f(1),
∴f(a)+f(b)=2f(1),
综上,可得f(a)+f(b)≥2f(1),
故选:C.
【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的上下顶点分别为,且点. 分别为椭圆的左、右焦点,且.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)点是椭圆上异于, 的任意一点,过点作轴于, 为线段
的中点.直线与直线交于点, 为线段的中点, 为坐标原点.求
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱ABCD-A1B1C1D1中,底面四边形ABCD为菱形,A1A=AB=2,∠ABC=,E,F分别是BC,A1C的中点.
(1)求异面直线EF,AD所成角的余弦值;
(2)点M在线段A1D上, .若CM∥平面AEF,求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A,B为曲线C:y=上两点,A与B的横坐标之和为4.
(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax﹣lnx,x∈(0,e],g(x)= ,其中e是自然常数,a∈R.
(1)讨论a=1时,函数f(x)的单调性和极值;
(2)求证:在(1)的条件下,f(x)>g(x)+ ;
(3)是否存在实数a使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了得到函数y=sin2x的图象,只需把函数y=sin(2x﹣ )的图象( )
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com