精英家教网 > 高中数学 > 题目详情

【题目】已知函数)与函数有公共切线.

(Ⅰ)求的取值范围;

(Ⅱ)若不等式对于的一切值恒成立,求的取值范围.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析:(1)函数有公共切线, 函数的图象相切或无交点,所以找到两曲线相切时的临界值,就可求出参数的取值范围。(2)等价于上恒成立,令,x>0,继续求导,令,得。可知的最小值为>0,把上式看成解关于a的不等式,利用函数导数解决。

试题解析:(Ⅰ)

∵函数有公共切线,∴函数的图象相切或无交点.

当两函数图象相切时,设切点的横坐标为),则

解得(舍去),

,得

数形结合,得,即的取值范围为

(Ⅱ)等价于上恒成立

因为,令,得

极小值

所以的最小值为

,因为

,得,且

极大值

所以当时,的最小值

时,的最小值为

所以

综上得的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】小张在淘宝网上开一家商店,他以10元每条的价格购进某品牌积压围巾2000条.定价前,小张先搜索了淘宝网上的其它网店,发现:A商店以30元每条的价格销售,平均每日销售量为10条;B商店以25元每条的价格销售,平均每日销售量为20条.假定这种围巾的销售量t(条)是售价x(元)(x∈Z+)的一次函数,且各个商店间的售价、销售量等方面不会互相影响.
(1)试写出围巾销售每日的毛利润y(元)关于售价x(元)(x∈Z+)的函数关系式(不必写出定义域),并帮助小张定价,使得每日的毛利润最高(每日的毛利润为每日卖出商品的进货价与销售价之间的差价);
(2)考虑到这批围巾的管理、仓储等费用为200元/天(只要围巾没有售完,均须支付200元/天,管理、仓储等费用与围巾数量无关),试问小张应该如何定价,使这批围巾的总利润最高(总利润=总毛利润﹣总管理、仓储等费用)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于R上的可导函数f(x),若a>b>1且有(x﹣1)f′(x)≥0,则必有(
A.f(a)+f(b)<2f(1)
B.f(a)+f(b)≤2f(1)
C.f(a)+f(b)≥2f(1)
D.f(a)+f(b)>2f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:设上的可导函数,若为增函数,则称上的凸函数.

(1)判断函数是否为凸函数;

(2)设上的凸函数,求证:若 ,则恒有成立;

(3)设 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游景区的景点A处和B处之间有两种到达方式,一种是沿直线步行,另一种是沿索道乘坐缆车,现有一名游客从A处出发,以50m/min的速度匀速步行,30min后到达B处,在B处停留20min后,再乘坐缆车回到A处.假设缆车匀速直线运动的速度为150m/mm.
(1)求该游客离景点A的距离y(m)关于出发后的时间x(mm)的函数解析式,并指出该函数的定义域;
(2)做出(1)中函数的图象,并求该游客离景点A的距离不小于1000m的总时长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)求f(x)的极值;
(2)试比较20162017与20172016的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市2016年11月1日11月30日对空气污染指数的监测数据如下(主要污染物可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,83,82,82,64,79,86,85,75,71,49,45.

样本频率分布表:

分组

频数

频率

2

1

4

6

10

2

(Ⅰ)完成频率分布表;

(Ⅱ)作出频率分布直方图;

(Ⅲ)根据国家标准,污染指数在050之间时,空气质量为优;在51100之间时为良;在101150之间时,为轻微污染;在151200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了体现国家“民生工程”,某市政府为保障居民住房,现提供一批经济适用房.现有条件相同的甲、已、丙、丁四套住房供A、B、C三人自主申请,他们的申请是相互独立的.
(1)求A、B两人都申请甲套住房的概率;
(2)求A、B两人不申请同一套住房的概率;
(3)设3名参加选房的人员中选择甲套住房的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn,且满足a1=2,anan+1=2(Sn+1) ().

(1)求数列{an}的通项公式;

(2)若数列{bn}满足b1=1,(),求{bn}的前n项和Tn

(3)若数列{cn}满足(),试问是否存在正整数pq(其中1 < p < q),使c1cpcq成等比数列?若存在,求出所有满足条件的数组(pq);若不存在,说明理由.

查看答案和解析>>

同步练习册答案