精英家教网 > 高中数学 > 题目详情

【题目】设椭圆 )的左右焦点分别为 ,下顶点为,直线的方程为.

(Ⅰ)求椭圆的离心率;

(Ⅱ)设为椭圆上异于其顶点的一点, 到直线的距离为,且三角形的面积为.

(1)求椭圆的方程;

(2)若斜率为的直线与椭圆相切,过焦点 分别作 ,垂足分别为 ,求的最大值.

【答案】(1)(2)4

【解析】试题分析:(Ⅰ) 由直线斜率为 可得 ,从而可得结果;(Ⅱ)(1)先求得 点坐标,根据三角形面积可得 的值,从而可得椭圆方程,(2) 设直线 代入椭圆的方程中,

,判别式为零,及点到直线的距离公式可将表示为 的函数,再利用基本不等式求解即可.

试题解析:(Ⅰ)由已知,则.

(Ⅱ)(1)设点,于是

所以

无解;

.

又因为三角形面积,所以

于是,椭圆的方程为.

(2)设直线 代入椭圆的方程中,

由已知,即

同时

①当时,

所以

当且仅当时等号成立

时, ,因此

②当时,四边形为矩形

此时

综上①②可知, 的最大值为4.

【方法点晴】本题主要考查待定系数法求椭圆方程和最值问题,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调法以及均值不等式法,本题(Ⅱ)就是用的这种思路,利用均值不等式法的最大值的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设两个非零向量 不共线.
(1)如果 = + =2 +8 =3 ﹣3 ,求证:A、B、D三点共线;
(2)若| |=2,| |=3, 的夹角为60°,是否存在实数m,使得m + 垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的短轴长为,右焦点为,点是椭圆上异于左、右顶点的一点.

(1)求椭圆的方程;

(2)若直线与直线交于点,线段的中点为,证明:点关于直线的对称点在直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为(

A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(xk)ex

(1)f(x)的单调区间;

(2)f(x)在区间[01]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(2x﹣ ),x∈R.

(1)在给定的平面直角坐标系中,画函数f(x)=2sin(2x﹣ ),x∈[0,π]的简图;
(2)求f(x)=2sin(2x﹣ ),x∈[﹣π,0]的单调增区间;
(3)函数g(x)=2cos2x的图象只经过怎样的平移变换就可得到f(x)=2sin(2x﹣ ),x∈R的图象?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)ax21(a>0)g(x)x3bx.

(1)若曲线yf(x)与曲线yg(x)在它们的交点(1c)处具有公共切线ab的值;

(2)a3b=-9若函数f(x)g(x)在区间[k2]上的最大值为28k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于维向量,若对任意均有,则称向量. 对于两个向量定义.

(1)若, 求的值;

(2)现有一个向量序列: 且满足: ,求证:该序列中不存在向量.

(3) 现有一个向量序列: 且满足: ,若存在正整数使得向量序列中的项,求出所有的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,椭圆 的离心率为是椭圆的右焦点,直线的斜率为为坐标原点.

(1)求的方程;

(2)设过点的动直线相交于两点,当的面积最大时,求的方程.

查看答案和解析>>

同步练习册答案