【题目】已知函数f(x)=(x-k)ex,
(1)求f(x)的单调区间;
(2)求f(x)在区间[0,1]上的最小值.
【答案】(1)f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞);
(2)最小值为f(1)=(1-k)e
【解析】试题分析:(1)f′(x)=(x﹣k+1)ex,令f′(x)=0,得x=k﹣1.由此能求出f(x)的单调区间.
(2)当k﹣1≤0时,函数f(x)在区间[0,1]上递增,f(x)min=f(0)=﹣k;当1<k≤2时,函数f(x)在区间[0,k﹣1]上递减,(k﹣1,1]上递增,;当k>2时,函数f(x)在区间[0,1]上递减,f(x)min=f(1)=(1﹣k)e.
试题解析:
解:(1)f′(x)=(x-k+1)ex.
令f′(x)=0,得x=k-1.
当x变化时,f(x)与f′(x)的变化情况如下:
x | (-∞,k-1) | (k-1) | (k-1,+∞) |
f′(x) | - | 0 | + |
f(x) | -ek-1 |
所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).
(2)当k-1≤0,即k≤1时,函数f(x)在[0,1]上单调递增,
所以f(x)在区间[0,1]上的最小值为f(0)=-k.
当0<k-1<1,即1<k<2时,
由(1)知f(x)在[0,k-1)上单调递减,在(k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为
f(k-1)=-ek-1.
当k-1≥1,即k≥2时,函数f(x)在[0,1]上单调递减,
所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程为,直线的参数方程为(为参数, ).
(Ⅰ)把曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;
(Ⅱ)若直线经过点,求直线被曲线截得的线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x3(单位:万元),成本函数为C(x)=460x-5 000(单位:万元).
(1)求利润函数P(x);(提示:利润=产值-成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆: ()的左右焦点分别为, ,下顶点为,直线的方程为.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设为椭圆上异于其顶点的一点, 到直线的距离为,且三角形的面积为.
(1)求椭圆的方程;
(2)若斜率为的直线与椭圆相切,过焦点, 分别作, ,垂足分别为, ,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面内有一个△ABC和一点O(如图),线段OA,OB,OC的中点分别为E,F,G,BC,CA,AB的中点分别为L,M,N,设 = , = , = .
(1)试用 , , 表示向量 , , ;
(2)证明:线段EL,FM,GN交于一点且互相平分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内的动点P到定直线l:x=的距离与点P到定点F(,0)之比为.
(1)求动点P的轨迹C的方程;
(2)若点N为轨迹C上任意一点(不在x轴上),过原点O作直线AB,交(1)中轨迹C于点A、B,且直线AN、BN的斜率都存在,分别为k1、k2,问k1·k2是否为定值?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com