【题目】已知动点 P 与定点
的距离和它到定直线 x 4 的距离的比是1: 2 ,记动点 P 的轨迹为曲线 E.
(1)求曲线 E 的方程;
(2)设 A 是曲线 E 上的一个点,直线 AF 交曲线 E 于另一点 B,以 AB 为边作一个平行四边形,顶点 A、B、C、D 都在轨迹 E 上,判断平行四边形 ABCD 能否为菱形,并说明理由;
(3)当平行四边形 ABCD 的面积取到最大值时,判断它的形状,并求出其最大值.
【答案】(1)
;(2)不能是菱形;(3)矩形
【解析】试题分析:(1)将几何条件用坐标表示出来,化简即可;(2)设出直线方程,联立椭圆,得到交点坐标之间的关系,根据菱形可得对角线垂直,利用向量处理;(3)写出面积,利用换元法求其最大值,确定m的值,即可判定四边形的形状大小.
试题解析:(1)设点
,由题意:
即
,所以
化简得:
即为曲线E的方程
(2)直线AB不能平行于x轴,故设直线AB的方程为
,
, ![]()
由
得
, 所以
㈠①
连结OA,OB,若ABCD为菱形,则
即![]()
又
,所以有
,代入①式得
,无解,故ABCD不能是菱形.
(3)由题知
,所以![]()
设
, ![]()
令
可知当
时
有最小值即面积有最值,此时
,即
轴,所以ABCD为矩形.
科目:高中数学 来源: 题型:
【题目】已知在四棱锥
中,底面
是矩形,且
,
,
平面
,
、
分别是线段
、
的中点.
(1)证明:
(2)在线段
上是否存在点
,使得
∥平面
,若存在,确定点
的位置;若不存在,说明理由.
(3)若
与平面
所成的角为
,求二面角
的余弦值
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以原点为圆心,椭圆C的短半轴长为半径的圆与直线
相切.
、
是椭圆的左、右顶点,直线
过
点且与
轴垂直.
![]()
(1)求椭圆
的标准方程;
(2)设
是椭圆
上异于
、
的任意一点,作
轴于点
,延长
到点
使得
,连接
并延长交直线
于点
,
为线段
的中点,判断直线
与以
为直径的圆
的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)若圆C的半径为
,求实数a的值;
(2)若弦AB的长为6,求实数a的值;
(3)当a=1时,圆O:x2+y2=2与圆C交于M,N两点,求弦MN的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对
名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在
名男性驾驶员中,平均车速超过![]()
的有
人,不超过![]()
的有
人;在
名女性驾驶员中,平均车速超过![]()
的有
人,不超过![]()
的有
人.
(Ⅰ)完成下面的列联表,并判断是否有
的把握认为平均车速超过100
与性别有关;
平均车速超过 | 平均车速不超过 | 合计 | |
男性驾驶人数 | |||
女性驾驶人数 | |||
合计 |
(Ⅱ)在被调查的驾驶员中,按分层抽样的方法从平均车速不超过![]()
的人中抽取
人,再从这
人中采用简单随机抽样的方法随机抽取
人,求这
人恰好为
名男生、
名女生的概率.
参考公式与数据:
,其中
.
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线y2=2px(p>0)的焦点,斜率为2
的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.
(1)求该抛物线的方程.
(2)O为坐标原点,C为抛物线上一点,若
,求λ的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在(﹣∞,+∞)上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log
3),c=f(21.6),则a,b,c的大小关系是( )
A.c<a<b
B.c<b<a
C.b<c<a
D.a<b<c
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=
,椭圆的长半轴与双曲线实半轴之差为4,离心率之比为3∶7.
(1)求这两曲线的方程;
(2)若P为这两曲线的一个交点,求cos∠F1PF2的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com