精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的通项公式an=5-n,其前n项和为Sn,将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn,若存在m∈N*,使对任意n∈N*,总有Sn<Tn+λ恒成立,则实数λ的取值范围是(  )
A.λ≥2B.λ>3C.λ≥3D.λ>2

分析 通过an=5-n可求出Tn=8(1-$\frac{1}{{2}^{n}}$)、Sn=$\frac{n(9-n)}{2}$,利用4≤Tn<8及Sn≤10,结合题意可知10<8+λ,进而计算可得结论.

解答 解:∵an=5-n,
∴a1=4,a2=3,a3=2,a4=1,
则b1=a1=4,b2=a3=2,b3=a4=1,
∴数列{bn}是首项为4、公比为$\frac{1}{2}$的等比数列,
∴Tn=$\frac{4(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=8(1-$\frac{1}{{2}^{n}}$),
∴4≤Tn<8,
又∵Sn=$\frac{n(4+5-n)}{2}$=$\frac{n(9-n)}{2}$,
∴当n=4或n=5时,Sn取最大值10,
∵存在m∈N*,使对任意n∈N*,总有Sn<Tn+λ恒成立,
∴10<8+λ,即λ>2,
故选:D.

点评 本题考查数列的通项及前n项和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)已知平面向量$\overrightarrow{α}$,$\overrightarrow{β}$,|$\overrightarrow{α}$|=1,$\overrightarrow{β}$=(2,0),$\overrightarrow{α}$⊥($\overrightarrow{α}$-2$\overrightarrow{β}$),求|2$\overrightarrow{α}$+$\overrightarrow{β}$|的值;
(2)已知三个向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$两两所夹的角都为120°,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=3,求向量$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$与向量$\overrightarrow{a}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an},a1=2,an+1=2an+2n+1,bn=$\frac{{a}_{n}}{{2}^{n}}$,n∈N*
(1)证明数列{bn}为等差数列,并求数列{an}和{bn}通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知公差不为零的等差数列{an}的前n项和为Sn,满足a1=-1,且a2,a3,a6成等比数列.
(Ⅰ)求an及Sn
(Ⅱ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设正三棱锥A-BCD的所有顶点都在球O的球面上,BC=1,E、F分别是AB,BC的中点,EF⊥DE,则球O的半径为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{10}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.各项均为正数的数列{an}的前n项和Sn满足2Sn=a${\;}_{n}^{2}$+an(n∈N*).
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=$\frac{1}{{a}_{n}{a}_{n+1}}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}满足:an+1+2an=0,且a2=2,则{an}前10项和等于(  )
A.$\frac{1-{2}^{10}}{3}$B.-$\frac{1-{2}^{10}}{3}$C.210-1D.1-210

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cost}\\{y=\sqrt{2}sint}\end{array}\right.$(t为参数),C在点(1,1)处的切线为l,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求l的极坐标方程;
(2)过点M(-$\frac{1}{4}$,$\frac{\sqrt{3}}{4}$)任作一条直线交曲线C于A,B两点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow a$=(0,4),$\overrightarrow b$=(2,2),则下列结论中正确的是(  )
A.$|{\overrightarrow a}|=|{\overrightarrow b}|$B.$\overrightarrow a⊥\overrightarrow b$C.$(\overrightarrow a-\overrightarrow b)∥\overrightarrow a$D.$\overrightarrow a•\overrightarrow b=8$

查看答案和解析>>

同步练习册答案