精英家教网 > 高中数学 > 题目详情
11.在数列{an}中,a1=1,an+1=3an+2n-1,则数列{an}的前100项和S100为(  )
A.399-5051B.3100-5051C.3101-5051D.3102-5051

分析 由an+1=3an+2n-1得an+1+(n+1)=3(an+n),可得数列{an+n}是以a1+1=2为首项,公比为3的等比数列⇒an=2•3n-1-n,则sn=2(30+31+32+…+399)-(1+2+…+100)即可.

解答 解:由an+1=3an+2n-1得an+1+(n+1)=3(an+n),
∴数列{an+n}是以a1+1=2为首项,公比为3的等比数列.
∴${a}_{n}+n=2•{3}^{n-1}$,⇒an=2•3n-1-n,
则Sn=2(30+31+32+…+399)-(1+2+…+100)
=2×$\frac{1×(1-{3}^{100})}{1-3}-\frac{100(1+100)}{2}$=3100-5051,
故选:B.

点评 本题考查了数列的递推式,等比数列的求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,若$({\sqrt{3}b-c})cosA=acosC$,则$tan({A-\frac{π}{4}})$=$3-2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知关于x的方程:${log_2}(x+3)-{log_{2^2}}{x^2}=a$在区间(3,4)内有解,则实数a的取值范围是(  )
A.$[{log_2}\frac{7}{4},+∞)$B.$({log_2}\frac{7}{4},+∞)$C.$({log_2}\frac{7}{4},1)$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆C1:x2+y2+2ax+a2-4=0(a≥0)与圆C2:x2+y2-2by+b2-1=0(b≥0)外切,则$\frac{b}{a+6}$最大值为$\frac{1}{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“所有9的倍数的数都是3的倍数,5不是9的倍数,故5不是3的倍数.”上述推理(  )
A.不是三段论推理,且结论不正确B.不是三段论推理,但结论正确
C.是三段论推理,但小前提错D.是三段论推理,但大前提错

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,满足“f(xy)=f(x)+f(y)”的单调递增函数是(  )
A.f(x)=log${\;}_{\frac{1}{2}}$xB.f(x)=x3C.f(x)=2xD.f(x)=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别为F1,F2,右焦点F2与抛物线y2=4$\sqrt{34}$x的焦点相同,离心率为e=$\frac{\sqrt{34}}{5}$,若双曲线左支上有一点M到右焦点F2距离为18,N为MF2的中点,O为坐标原点,则|NO|等于(  )
A.$\frac{2}{3}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义在区间$[{-\frac{π}{4},\frac{π}{4}}]$上的函数f(x)=2asin2x+b的最大值为1,最小值为-5,则实数a+b的值为-$\frac{1}{2}$或-$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,且$\overrightarrow m$=(a,b+c),$\overrightarrow n=({1,cosC+\sqrt{3}sinC}),\overrightarrow m∥\overrightarrow n$.
(1)求角A;
(2)若a=3,求△ABC面积的取值范围.

查看答案和解析>>

同步练习册答案