【题目】要想得到函数 的图象,只需将函数y=sinx的图象上所有的点( )
A.先向右平移 个单位长度,再将横坐标伸长为原来的2倍,纵坐标不变
B.先向右平移 个单位长度,横坐标缩短为原来的 倍,纵坐标不变
C.横坐标缩短为原来的 倍,纵坐标不变,再向右平移 个单位长度
D.横坐标变伸长原来的2倍,纵坐标不变,再向右平移 个单位长度
科目:高中数学 来源: 题型:
【题目】方程为x2+y2﹣4x﹣2y+4=0.以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求l的普通方程与C的极坐标方程;
(2)已知l与C交于P,Q,求|PQ|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 =(sinx,cos2x), =( cosx,1),x∈R,设f(x)= .
(1)求f(x)的解析式及单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且a=2,f(A)=1,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于实数a,b,c,下列命题正确的是( )
A.若a>b,则ac2>bc2
B.若a<b<0,则a2>ab>b2
C.若a<b<0,则
D.若a<b<0,则
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,A、B、C的对边分别为a,b,c,已知A≠ ,且3sinAcosB+ bsin2A=3sinC.
(I)求a的值;
(Ⅱ)若A= ,求△ABC周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x2﹣ax+a)e﹣x , a∈R.
(1)求函数f(x)的单调区间;
(2)设g(x)=f'(x),其中f'(x)为函数f(x)的导函数.判断g(x)在定义域内是否为单调函数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=eax﹣x. (Ⅰ)若曲线y=f(x)在(0,f(0))处的切线l与直线x+2y+3=0垂直,求a的值;
(Ⅱ)当a≠1时,求证:存在实数x0使f(x0)<1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为非零实数,且对于任意的正整数n,都有(a1+a2+a3+…+an)2=a13+a23+a33+…+an3 .
(1)写出数列{an}的前三项a1 , a2 , a3(请写出所有可能的结果);
(2)是否存在满足条件的无穷数列{an},使得a2017=﹣2016?若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由;
(3)记an点所有取值构成的集合为An , 求集合An中所有元素之和(结论不要证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆 + =1(a>b>0)的离心率为 ,C为椭圆上位于第一象限内的一点.
(1)若点C的坐标为(2, ),求a,b的值;
(2)设A为椭圆的左顶点,B为椭圆上一点,且 = ,求直线AB的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com