10£®ÒÑÖªÔÚ¼«×ø±êϵÖУ¬ÇúÏߦ¸µÄ·½³ÌΪ¦Ñ=6cos¦È£®ÒÔ¼«µãÎªÆ½ÃæÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖᣬ²¢ÔÚÁ½×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=4+tcos¦È\\ y=-1+tsin¦È\end{array}\right.$£¨tΪ²ÎÊý£¬¦È¡ÊR£©£®
£¨¢ñ£©ÇóÇúÏߦ¸µÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl½»ÇúÏߦ¸ÓÚA¡¢CÁ½µã£¬¹ýµã£¨4£¬-1£©ÇÒÓëÖ±Ïßl´¹Ö±µÄÖ±Ïßl0½»ÇúÏߦ¸ÓÚB¡¢DÁ½µã£®ÇóËıßÐÎABCDÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©ÇúÏßCµÄ¼«×ø±ê·½³Ì¼´ ¦Ñ2=6¦Ñcos¦È£¬¸ù¾Ý x=¦Ñcos¦È£¬y=¦Ñsin¦È£¬°ÑËü»¯ÎªÖ±½Ç×ø±ê·½³Ì£»ÏûÈ¥²ÎÊý£¬¿ÉµÃÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÏÈÈ·¶¨AC2+BD2Ϊ¶¨Öµ£¬±íʾ³öÃæ»ý£¬¼´¿ÉÇóËıßÐÎABCDµÄÃæ»ýµÄ×î´óÖµºÍ×îСֵ£®

½â´ð ½â£º£¨¢ñ£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=6cos¦È£¬¼´ ¦Ñ2=6¦Ñcos¦È£¬»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ x2+y2=6x£»
Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=4+tcos¦È\\ y=-1+tsin¦È\end{array}\right.$£¨tΪ²ÎÊý£¬¦È¡ÊR£©£¬Ö±ÏßlµÄÆÕͨ·½³Ìy+1=tan¦È£¨x-4£©£»
£¨¢ò£©ÉèÏÒAC£¬BDµÄÖеã·Ö±ðΪE£¬F£¬ÔòOE2+OF2=2£¬
¡àAC2+BD2=4£¨18-OE2-OF2£©=64£¬
¡àS2=$\frac{1}{4}$AC2•BD2=$\frac{1}{4}$AC2•£¨64-AC2£©¡Ü256£¬
¡àS¡Ü16£¬µ±ÇÒ½öµ±AC2=64-AC2£¬¼´AC=4$\sqrt{2}$ʱ£¬È¡µÈºÅ£¬
¹ÊËıßÐÎABCDÃæ»ýSµÄ×î´óֵΪ16£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³ÌµÄ·½·¨£¬¿¼²éÖ±Ïß¹ý¶¨µã£¬¿¼²éÃæ»ýµÄ¼ÆË㣬»ù±¾²»µÈʽµÄÓ¦Óã¬ÕýÈ·ÔËÓôúÈë·¨ÊǽâÌâµÄ¹Ø¼ü£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÆøÏó²¿ÃÅÌṩÁËijµØÇø½ñÄêÁùÔ·ݣ¨30Ì죩µÄÈÕ×î¸ßÆøÎµÄͳ¼Æ±íÈç±í£º
ÈÕ×î¸ßÆøÎÂt£¨µ¥Î»£º¡æ£©t¡Ü22¡æ22¡æ£¼t¡Ü28¡æ28¡æ£¼t¡Ü32¡æt£¾32¡æ
ÌìÊý612XY
ÓÉÓÚ¹¤×÷Êèºö£¬Í³¼Æ±í±»Ä«Ë®ÎÛȾ£¬YºÍXÊý¾Ý²»Çå³þ£¬µ«ÆøÏó²¿ÃÅÌṩµÄ×ÊÁÏÏÔʾ£¬ÁùÔ·ݵÄÈÕ×î¸ßÆøÎ²»¸ßÓÚ32¡æµÄƵÂÊΪ0.8£®
£¨¢ñ£©ÇóX£¬YµÄÖµ£»
£¨¢ò£©°ÑÈÕ×î¸ßÆøÎ¸ßÓÚ32¡æ³ÆÎª±¾µØÇøµÄ¡°¸ßÎÂÌìÆø¡±£¬¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæ2¡Á2ÁÐÁª±í£¬²¢¾Ý´ËÍÆ²âÊÇ·ñÓÐ95%µÄ°ÑÎÕÈÏΪ±¾µØÇøµÄ¡°¸ßÎÂÌìÆø¡±ÓëÀäÒû¡°ÍúÏú¡±Óйأ¿ËµÃ÷ÀíÓÉ£®
¸ßÎÂÌìÆø·Ç¸ßÎÂÌìÆøºÏ¼Æ
ÍúÏú22224        
²»ÍúÏú426
ºÏ¼Æ62430
¸½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
P£¨K2¡Ýk£©0.100.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖª$A={60¡ã}£¬b=4£¬{S_{¡÷ABC}}=4\sqrt{3}$£¬Ôòa=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªµãPÔÚÇúÏßCÉÏ£¬Pµ½F£¨1£¬0£©µÄ¾àÀë±ÈËüµ½Ö±Ïßl£ºx+2=0µÄ¾àÀëС1£¬Ö±Ïßy=x-2ÓëÇúÏßC½»ÓÚA£¬BÁ½µã£®
£¨1£©ÇóÏÒABµÄ³¤¶È£»
£¨2£©ÈôµãPÔÚµÚÒ»ÏóÏÞ£¬ÇÒ¡÷ABPÃæ»ýΪ$2\sqrt{3}$£¬ÇóµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êý$f£¨x£©=lnx+\frac{1}{2x}$£®
£¨¢ñ£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£©Éèg£¨x£©=f£¨x£©-m£®Èôº¯Êýg£¨x£©ÓÐÁ½¸öÁãµãx1£¬x2£¨x1£¼x2£©£¬Ö¤Ã÷£ºx1+x2£¾1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª½Ç¦ÁµÄ¶¥µãÔÚ×ø±êÔ­µã£¬Ê¼±ßÓëxÖáµÄ·Ç¸º°ëÖáÖØºÏ£¬Öձ߾­¹ýµã$P£¨{-3£¬\sqrt{3}}£©$£®
£¨1£©Çósin2¦Á-tan¦ÁµÄÖµ£»
£¨2£©Èôº¯Êýf£¨x£©=cos£¨x-¦Á£©cos¦Á-sin£¨x-¦Á£©sin¦Á£¬Çóº¯Êý$g£¨x£©-\sqrt{3}f£¨{\frac{¦Ð}{2}-2x}£©-2{f^2}£¨x£©$ÔÚÇø¼ä$[{0£¬\frac{2¦Ð}{3}}]$ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®»¯¼ò$\frac{cos£¨¦Ð+¦Á£©•sin£¨¦Á+2¦Ð£©}{sin£¨-¦Á-¦Ð£©•cos£¨-¦Ð-¦Á£©}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®f£¨x£©=Asin£¨¦Øx+¦Ø¦Ð£©£¨A£¾0£¬¦Ø£¾0£©ÔÚ$[{-\frac{3¦Ð}{2}£¬-\frac{3¦Ð}{4}}]$Éϵ¥µ÷£¬Ôò¦ØµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{3}{4}$C£®1D£®$\frac{4}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚËÄÀâ×¶S-ABCDÖУ¬µãOÊÇÕý·½ÐÎABCDµÄÖÐÐÄ£¬SO¡ÍÆ½ÃæABCD£¬ÇÒSO=OD£¬µãPΪÀâSDÉÏÒ»µã£®
£¨¢ñ£© µ±µãPΪÀâSDµÄÖеãʱ£¬ÇóÖ¤£ºSD¡ÍÆ½ÃæPAC£»
£¨¢ò£©ÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÖ±ÏßBCÓëÆ½ÃæPACËù³É½ÇµÄÕýÏÒֵΪ$\frac{\sqrt{10}}{10}$£¿Èô´æÔÚ£¬ÇëÈ·¶¨µãPµÄλÖã¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸