10£®¹ØÓÚº¯Êýf£¨x£©=sin£¨2x+$\frac{¦Ð}{6}$£©+sin£¨2x-$\frac{¦Ð}{3}$£©£¬Ôò
¢Ùy=f£¨x£©µÄ×î´óֵΪ$\sqrt{2}$£»
¢Úy=f£¨x£©ÔÚÇø¼ä[-$\frac{¦Ð}{24}$£¬$\frac{11¦Ð}{24}$]ÉÏÊÇÔöº¯Êý£»
¢Ûµ±x1-x2=¦Ðʱ£¬f£¨x1£©=f£¨x2£©£»
¢Üº¯Êýf£¨x£©µÄͼÏó¹ØÓڵ㣨$\frac{¦Ð}{24}$£¬0£©¶Ô³Æ£»
¢Ý½«º¯Êýy=$\sqrt{2}$cos2xµÄͼÏóÏòÓÒÆ½ÒÆ$\frac{5¦Ð}{24}$¸öµ¥Î»ºóÓ뺯Êýf£¨x£©µÄͼÏóÖØºÏ£®
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÊǢ٢ۢܣ®£¨ÌîÉÏËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©

·ÖÎö ÀûÓÃÈý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦Óû¯¼òº¯Êý½âÎöʽ¿ÉµÃf£¨x£©=$\sqrt{2}$sin£¨2x-$\frac{¦Ð}{12}$£©£®
ÀûÓÃÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ¿ÉÅжϢÙÕýÈ·£»
ÓÉ2k¦Ð-$\frac{¦Ð}{2}$¡Ü2x-$\frac{¦Ð}{12}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ¿É½âµÃº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£¬Ò×Ö¤¢Ú´íÎó£»
µ±x1-x2=¦Ðʱ£¬¿ÉÇóf£¨x1£©=f£¨x2+¦Ð£©=f£¨x2£©£®¿ÉÅжϢÛÕýÈ·£»
ÓÉ2x-$\frac{¦Ð}{12}$=k¦Ð£¬k¡ÊZ¿É½âµÃº¯Êý¶Ô³Æµã¿ÉÅжϢÜÕýÈ·£»
¸ù¾ÝÈý½Çº¯ÊýͼÏóµÄÆ½ÒÆ±ä»»¹æÂɼ´¿ÉÅжϢݴíÎó£®

½â´ð ½â£ºf£¨x£©=sin£¨2x+$\frac{¦Ð}{6}$£©+sin£¨2x-$\frac{¦Ð}{3}$£©=cos£¨2x-$\frac{¦Ð}{3}$£©+sin£¨2x-$\frac{¦Ð}{3}$£©=$\sqrt{2}$sin£¨2x-$\frac{¦Ð}{3}$+$\frac{¦Ð}{4}$£©=$\sqrt{2}$sin£¨2x-$\frac{¦Ð}{12}$£©£®
y=f£¨x£©µÄ×î´óֵΪ$\sqrt{2}$£¬¢ÙÕýÈ·£»
ÓÉ2k¦Ð-$\frac{¦Ð}{2}$¡Ü2x-$\frac{¦Ð}{12}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ¿É½âµÃº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£º[k¦Ð-$\frac{5¦Ð}{24}$£¬k¦Ð+$\frac{7¦Ð}{24}$]£¬k¡ÊZ£¬Ò×Ö¤¢Ú´íÎó£»
µ±x1-x2=¦Ðʱ£¬f£¨x1£©=f£¨x2+¦Ð£©=$\sqrt{2}$sin[2£¨x2+¦Ð£©-$\frac{¦Ð}{12}$]=$\sqrt{2}$sin£¨2x2+2¦Ð-$\frac{¦Ð}{12}$£©=$\sqrt{2}$sin£¨2x2-$\frac{¦Ð}{12}$£©=f£¨x2£©£®¹Ê¢ÛÕýÈ·£»
ÓÉ2x-$\frac{¦Ð}{12}$=k¦Ð£¬k¡ÊZ¿É½âµÃº¯Êý¶Ô³ÆµãΪ£º£¨$\frac{k¦Ð}{2}+\frac{¦Ð}{24}$£¬0£©£¬k¡ÊZ£¬µ±k=0ʱ£¬¢ÜÕýÈ·£»
½«º¯Êýy=$\sqrt{2}$cos2xµÄͼÏóÏòÓÒÆ½ÒÆ$\frac{5¦Ð}{24}$¸öµ¥Î»ºóµÃµ½º¯Êý½âÎöʽ£ºy=$\sqrt{2}$cos[2£¨x-$\frac{5¦Ð}{24}$£©]=$\sqrt{2}$cos£¨2x-$\frac{5¦Ð}{12}$£©=$\sqrt{2}$sin£¨2x+$\frac{¦Ð}{12}$£©£¬¹Ê¢Ý´íÎó£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÈý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦Óã¬ÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊôÓÚ»ù±¾ÖªÊ¶µÄ¿¼²é£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®¸÷Ïî¾ù²»ÏàµÈµÄµÈ²îÊýÁÐ{an}µÄǰËÄÏîµÄºÍΪS4=14£¬ÇÒa1£¬a3£¬a7³ÉµÈ±ÈÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽanÓëǰnÏîºÍSn£»
£¨2£©¼ÇTnΪÊýÁÐ{$\frac{1}{{a}_{n}•{a}_{n+1}}$}µÄǰnÏîºÍ£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¸´Êý$\frac{4-3i}{1-2i}$µÄÐ鲿ÊÇ£¨¡¡¡¡£©
A£®-1B£®1C£®-2D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªf£¨x£©=x2+2£¬g£¨x£©=sinx£¬ÔòÏÂÁк¯ÊýÖмȲ»ÊÇÆæº¯ÊýÓÖ²»ÊÇżº¯ÊýµÄº¯ÊýÊÇ¢Ù¢Ú£¨ÌîдËùÓÐÕýÈ·½áÂÛ¶ÔÓ¦µÄÐòºÅ£©
¢Ùf£¨x£©+g£¨x£©£»
¢Úf£¨x£©-g£¨x£©£»
¢Ûf£¨x£©•g£¨x£©£»
¢Üf£¨g£¨x£©£©£»
¢Ýg£¨f£¨x£©£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=x3-3x£¬x¡ÊR£®
£¨¢ñ£©ÅжϺ¯Êýy=f£¨x£©ÔÚÇø¼ä£¨0£¬1£©ºÍ£¨1£¬+¡Þ£©Éϵĵ¥µ÷ÐÔ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨¢ò£©Èç¹ûº¯Êýg£¨x£©=x2-$\frac{k}{x}$-3£¬k¡ÊRÓÐÈý¸öÁãµã£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªSnÊÇÊýÁÐ{an}µÄǰnÏîºÍ£¬ÇÒa1=1£¬nan+1=2Sn£¨n¡ÊN*£©£®
£¨1£©Çóa2£¬a3£¬a4µÄÖµ£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Ëæ×ÅÒÆ¶¯»¥ÁªÍøµÄÉîÈëÆÕ¼°£¬ÓÃÊÖ»úÉÏÍøµÄÈËÊýÈÕÒæÔö¶à£¬Ä³½ÌÓý²¿ÃųÉÁ¢Á˵÷²éС×飬µ÷²é¡°³£ÉÏÍøÓë¸ß¶È½üÊӵĹØÏµ¡±£¬¶ÔijУ¸ßÖжþÄê¼¶800ÃûѧÉú½øÐмì²é£¬µÃµ½ÈçÏÂ2¡Á2ÁÐÁª±í£º
²»³£ÉÏÍø³£ÉÏÍø×ܼÆ
²»¸ß¶È½üÊÓ70150220
¸ß¶È½üÊÓ130450580
×ܼÆ200600800
¸ù¾ÝÁÐÁª±íµÄÊý¾Ý£¬¼ÆËãµÃµ½K2¡Ö7.524£¬Ôò£¨¡¡¡¡£©
A£®ÓÐ99.5%µÄ°ÑÎÕÈÏΪ³£ÉÏÍøÓë¸ß¶È½üÊÓÓйØ
B£®ÓÐ99.5%µÄ°ÑÎÕÈÏΪ³£ÉÏÍøÓë¸ß¶È½üÊÓÎÞ¹Ø
C£®ÓÐ99%µÄ°ÑÎÕÈÏΪ³£ÉÏÍøÓë¸ß¶È½üÊÓÓйØ
D£®ÓÐ99%µÄ°ÑÎÕÈÏΪ³£ÉÏÍøÓë¸ß¶È½üÊÓÎÞ¹Ø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚ¿Õ¼äÖ±½Ç×ø±êϵO-xyzÖУ¬ÒÑÖªP1£¨2£¬4£¬6£©£¬µãP£¨1£¬3£¬-5£©¹ØÓÚÆ½ÃæxOy¶Ô³ÆµÄµãΪP2£¬Ôò|P1P2|=$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=2x£¬µÈ²îÊýÁÐ{an}µÄ¹«²îΪ2£®Èôf£¨a2+a4+a6+a8+a10£©=4£¬Ôòlog2[f£¨a1£©•f£¨a2£©¡­f£¨an£©]=-6£¨n¡ÊN*£©£¬Ôòn=£¨¡¡¡¡£©
A£®10B£®8C£®6D£®5

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸