精英家教网 > 高中数学 > 题目详情
11.设复数z的共轭复数为$\overline z$,i为虚数单位,若z=1+i,则$\frac{3+2\overline z}{i}$=(  )
A.-2-5iB.-2+5iC.2+5iD.2-5i

分析 把z=1+i代入$\frac{3+2\overline z}{i}$,然后利用复数代数形式的乘除运算化简得答案.

解答 解:∵z=1+i,
∴$\frac{3+2\overline z}{i}$=$\frac{3+2(1-i)}{i}=\frac{5-2i}{i}=\frac{(5-2i)(-i)}{-{i}^{2}}=-2-5i$.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.2015赛季CBA(中国男子职业篮球联赛)总决赛于3月22号结束,北京首钢队4:2战胜辽宁药都队卫冕成功.如图是参加此次总决赛的甲、乙两名运动员在
6场比赛中的得分茎叶图,两人得分的平均数分别${\overline{x}}_{甲}$、${\overline{x}}_{乙}$,得分的方差分别为$\overline{{S}_{甲}}$、$\overline{{S}_{乙}}$,则下面正确的结论是(  )
A.${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$>$\overline{{S}_{乙}}$B.${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$<$\overline{{S}_{乙}}$
C.${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$>$\overline{{S}_{乙}}$D.${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$<$\overline{{S}_{乙}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为$(\frac{4}{5},-\frac{3}{5})$,∠AOC=α,若|BC|=1,则$\sqrt{3}{cos^2}\frac{α}{2}-sin\frac{α}{2}cos\frac{α}{2}-\frac{{\sqrt{3}}}{2}$的值为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数的值域为R的是(  )
A.y=3x(x>1)B.y=$\frac{8}{x}$C.y=-4x+5D.y=x2-6x+7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{e^x},x≤-1\\ \frac{x}{e},x>-1\end{array}$,关于x的方程f2(x)+t|f(x)|+1=0(t∈R)有四个不同的实数根,则t的取值范围为(  )
A.(-∞,-$\frac{{e}^{2}+1}{e}$)B.($\frac{{e}^{2}+1}{e}$,+∞)C.$(-\frac{{{e^2}+1}}{e},-2)$D.$(2,\frac{{{e^2}+1}}{e})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=$\left\{\begin{array}{l}3{e}^{x-1},x<3\\ lo{g}_{3}({x}^{2}-6),x≥3\end{array}\right.$,则f(f($\sqrt{15}$))的值为3e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图茎叶图记录了甲、乙两名射击运动员训练的成绩(环数),射击次数为4次.
(1)试比较甲、乙两名运动员射击水平的稳定性;
(2)每次都从甲、乙两组数据中随机各选取一个进行比对分析,共选取了4次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,a1=0,其前n项和Sn满足${S_n}=n{a_n}+\frac{1}{2}n({n-1})$.
(1)求数列{an}的通项公式;
(2)设${b_n}=\left\{\begin{array}{l}n•{2^{a_n}},n=2k-1\\ \frac{1}{{{n^2}+2n}},n=2k\end{array}\right.({k∈{{N}^*}})$,求数列{bn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xoy中,椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且$|{M{F_2}}|=\frac{5}{3}$.
(1)求C1的方程;
(2)在C1上任取一点P,过点P作x轴的垂线段PD,D为垂足,若动点N满足$\overrightarrow{DP}=\frac{{\sqrt{3}}}{2}\overrightarrow{DN}$,当点P在C1上运动时,求点N的轨迹E的方程.

查看答案和解析>>

同步练习册答案