精英家教网 > 高中数学 > 题目详情
11.若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是(  )
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$)

分析 把圆的方程化为标准方程,求出圆心和半径,直线过定点(-1,0),当直线y-mx-m=0与圆相切时,根据圆心到直线的距离d=$\frac{2|m|}{\sqrt{{m}^{2}+1}}$=r=1,求出m的值,数形结合求出实数m的取值范围.

解答 解:由题意可知曲线C1:x2+y2-2x=0表示一个圆,
化为标准方程得:(x-1)2+y2=1,
所以圆心坐标为(1,0),半径r=1;
C2:y(y-mx-m)=0表示两条直线y=0和y-mx-m=0,
由直线y-mx-m=0可知:此直线过定点(-1,0),
在平面直角坐标系中画出图象如图所示:
当直线y-mx-m=0与圆相切时,
圆心到直线的距离d=$\frac{2|m|}{\sqrt{{m}^{2}+1}}$=r=1,
化简得:m2=$\frac{1}{3}$,m=±$\frac{\sqrt{3}}{3}$.
则直线y-mx-m=0与圆相交时,
m∈(-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$),
故选:D.

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,体现了数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知中心均在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2,则e1e2的取值范围为(  )
A.$({\frac{1}{3},+∞})$B.$({\frac{2}{3},1})$C.(2,+∞)D.$({\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线y=x+2被圆M:x2+y2-4x-4y-1=0所截得的弦长为$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\left\{\begin{array}{l}{x^2}-5x,x≥0\\-{x^2}+ax,x<0\end{array}$是奇函数,则实数a的值是(  )
A.-10B.10C.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体三视图如下,图中三个等腰三角形的直角边长都是2,该几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.4D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某班级54名学生第一次考试的数学成绩为x1,x2,…,x54,其均值和标准差分别为90分和4分,若第二次考试每位学生的数学成绩都增加5分,则这54位学生第二次考试数学成绩的均值与标准差的和为99 分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=ex,g(x)=x-m(m∈R),设h(x)=f(x)•g(x).
(Ⅰ)求h(x)在[0,1]上的最大值.
(Ⅱ)当m=0时,试比较ef(x-2)与g(x)的大小,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC中,∠ACB=45°,B、C为定点且BC=3,A为动点,作AD⊥BC于D(异于点B),如图1所示.连接AB,将△ABD沿AD折起,使平面ABD⊥平面ADC,如图2所示.
(Ⅰ)求证:AB⊥CD;
(Ⅱ)当三棱锥A-BCD的体积取得最大值时,求线段AC的长;
(Ⅲ)在(Ⅱ)的条件下,分别取BC,AC的中点E、M,试在棱CD上确定一点N,使得EN⊥BM,并求此时EN与平面BMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某普通高中为了了解学生的视力状况,随机抽查了100名高二年级学生和100名高三年级学生,对这些学生配戴眼镜的度数(简称:近视度数)进行统计,得到高二学生的频数分布表和高三学生频率分布直方图如下:
近视度数0-100100-200200-300300-400400以上
学生频数304020100
将近视程度由低到高分为4个等级:当近视度数在0-100时,称为不近视,记作0;当近视度数在100-200时,称为轻度近视,记作1;当近视度数在200-400时,称为中度近视,记作2;当近视度数在400以上时,称为高度近视,记作3.
(Ⅰ)从该校任选1名高二学生,估计该生近视程度未达到中度及以上的概率;
(Ⅱ)设a=0.0024,从该校任选1名高三学生,估计该生近视程度达到中度或中度以上的概率;
(Ⅲ)把频率近似地看成概率,用随机变量X,Y分别表示高二、高三年级学生的近视程度,若EX=EY,求b.

查看答案和解析>>

同步练习册答案