精英家教网 > 高中数学 > 题目详情
16.某班级54名学生第一次考试的数学成绩为x1,x2,…,x54,其均值和标准差分别为90分和4分,若第二次考试每位学生的数学成绩都增加5分,则这54位学生第二次考试数学成绩的均值与标准差的和为99 分.

分析 利用标准差、均值的性质即得结论.

解答 解:当每位学生的数学成绩都增加5分时,
由标准差的性质可知:标准差不变,
但均值增加5,
即均值与标准差的和增加了5,
故答案为:99.

点评 本题考查标准差、均值的性质,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在(x2+$\frac{4}{x^2}$-4)5的展开式中含x4项的系数是-960.(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=sinx.若存在x1,x2,…,xm满足0≤x1<x2<…<xm≤6π,且|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xm-1)-f(xm)|=12(m≥2,m∈N*),则m的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设C表示复数集,A={x∈C|x2+1=0},则集合A的子集个数是(  )
A.0B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是(  )
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在实数集R上的函数f(x),对定义域内任意x满足f(x+2)-f(x-3)=0,且在区间(-1,4]上f(x)=x2-2x,则函数f(x)在区间(0,2015]上的零点个数为(  )
A.403B.806C.1209D.1208

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某车间分批生产某种产品,每批的生产准备费用为400元.若每批生产x件,则平均仓储时间为$\frac{x}{4}$天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品(  )
A.20件B.30件C.40件D.50 件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆C:x2+y2+6x-8y=0内有一点A(-5,0),直线l过点A交圆C于P,Q两点,若A为PQ中点,则|PQ|=2$\sqrt{5}$;若|PQ|=10,则l的方程为y=2x+10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且Sn+an=4,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知bn=2n-17(n∈N*),记cn=log2an-bn.求数列{cn}的前n项和Tn的最大值.

查看答案和解析>>

同步练习册答案