精英家教网 > 高中数学 > 题目详情
4.设C表示复数集,A={x∈C|x2+1=0},则集合A的子集个数是(  )
A.0B.1C.3D.4

分析 求出集合A,然后求解子集的个数即可.

解答 解:A={x∈C|x2+1=0}={-i,i},
集合A的子集分别为:∅,{-i},{i},{-i,i}.
共4个.
故选:D.

点评 本题考查集合的子集个数问题,求出集合的所有元素是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,抛物线C1:y2=2px(p>0)与椭圆C2:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{4}$=1(a>2)交于第一象限内一点M,F为抛物线C1的焦点,F1,F2分别为椭圆C2的上下焦点,已知|$\overrightarrow{MF}$-|$\overrightarrow{OF}$|=1,|$\overrightarrow{MF}$-$\overrightarrow{OF}$|=$\sqrt{10}$.
(1)求抛物线C1和椭圆C2的方程;
(2)是否存在经过M的直线l,与抛物线和椭圆分别交于非M的两点P,Q,使得$\overrightarrow{{F}_{1}P}$+$\overrightarrow{{F}_{2}Q}$=2$\overrightarrow{OM}$?若存在请求出直线的斜率,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若?x∈[$\frac{1}{4}$,+∞),使得不等式ex<$\frac{x-m}{\sqrt{x}}$成立,则实数m的取值范围是(  )
A.(-∞,-$\frac{1}{2}$${e}^{\frac{1}{4}}$)B.($\frac{1}{4}$-$\frac{1}{2}$${e}^{\frac{1}{4}}$,+∞)C.(-∞,$\frac{1}{4}$-$\frac{1}{2}$${e}^{\frac{1}{4}}$)D.($\frac{1}{2}$-$\frac{1}{2}$${e}^{\frac{1}{4}}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在最近发生的飞机失联事件中,各国竭尽全力搜寻相关信息,为体现国际共产主义援助精神,中国海监某支队奉命搜寻某海域.若该海监支队共有A、B型两种海监船10艘,其中A型船只7艘,B型船只3艘.
(1)现从中任选2艘海监船搜寻某该海域,求恰好有1艘B型海监船的概率;
(2)假设每艘A型海监船的搜寻能力指数为5,每艘B型海监船的搜寻能力指数为10.现从这10艘海监船中随机的抽出4艘执行搜寻任务,设搜寻能力指数共为ξ,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\left\{\begin{array}{l}{x^2}-5x,x≥0\\-{x^2}+ax,x<0\end{array}$是奇函数,则实数a的值是(  )
A.-10B.10C.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,面ABB1A1为矩形,AB=1,AA1=$\sqrt{2}$,D为AA1的中点,BD与AB1交于点O,CO⊥面ABB1A1
(Ⅰ)证明:BC⊥AB1
(Ⅱ)若OC=OA,求直线CO与面ABC成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某班级54名学生第一次考试的数学成绩为x1,x2,…,x54,其均值和标准差分别为90分和4分,若第二次考试每位学生的数学成绩都增加5分,则这54位学生第二次考试数学成绩的均值与标准差的和为99 分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=Asin(ωx+θ)(A>0,ω>0)的部分图象如图所示,则f($\frac{π}{3}$)的值为(  )
A.$\sqrt{2}$B.0C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一条铁路原有n个车站,为了适应客运需要,新增加了m(m>1)个车站,客运车票增加了62种,问原有多少个车站?现有多少个车站?

查看答案和解析>>

同步练习册答案