精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=sinx.若存在x1,x2,…,xm满足0≤x1<x2<…<xm≤6π,且|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xm-1)-f(xm)|=12(m≥2,m∈N*),则m的最小值为8.

分析 由正弦函数的有界性可得,对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)-f(xj)|≤f(x)max-f(x)min=2,要使m取得最小值,尽可能多让xi(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.

解答 解:∵y=sinx对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)-f(xj)|≤f(x)max-f(x)min=2,
要使m取得最小值,尽可能多让xi(i=1,2,3,…,m)取得最高点,
考虑0≤x1<x2<…<xm≤6π,|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xm-1)-f(xm)|=12,
按下图取值即可满足条件,

∴m的最小值为8.
故答案为:8.

点评 本题考查正弦函数的图象和性质,考查分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)-f(xj)|≤f(x)max-f(x)min=2是解答该题的关键,是难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.等差数列{an}中,若a4+a8=-3,则a6(a2+2a6+a10)的值是(  )
A.-9B.9C.-6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn=n2,n∈N*
(1)证明:数列{an}是等差数列;
(2)设bn=2${\;}^{{a}_{n}}$+(-1)nan,求数列{bn}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若?x∈[$\frac{1}{4}$,+∞),使得不等式ex<$\frac{x-m}{\sqrt{x}}$成立,则实数m的取值范围是(  )
A.(-∞,-$\frac{1}{2}$${e}^{\frac{1}{4}}$)B.($\frac{1}{4}$-$\frac{1}{2}$${e}^{\frac{1}{4}}$,+∞)C.(-∞,$\frac{1}{4}$-$\frac{1}{2}$${e}^{\frac{1}{4}}$)D.($\frac{1}{2}$-$\frac{1}{2}$${e}^{\frac{1}{4}}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线y=x+2被圆M:x2+y2-4x-4y-1=0所截得的弦长为$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在最近发生的飞机失联事件中,各国竭尽全力搜寻相关信息,为体现国际共产主义援助精神,中国海监某支队奉命搜寻某海域.若该海监支队共有A、B型两种海监船10艘,其中A型船只7艘,B型船只3艘.
(1)现从中任选2艘海监船搜寻某该海域,求恰好有1艘B型海监船的概率;
(2)假设每艘A型海监船的搜寻能力指数为5,每艘B型海监船的搜寻能力指数为10.现从这10艘海监船中随机的抽出4艘执行搜寻任务,设搜寻能力指数共为ξ,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\left\{\begin{array}{l}{x^2}-5x,x≥0\\-{x^2}+ax,x<0\end{array}$是奇函数,则实数a的值是(  )
A.-10B.10C.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某班级54名学生第一次考试的数学成绩为x1,x2,…,x54,其均值和标准差分别为90分和4分,若第二次考试每位学生的数学成绩都增加5分,则这54位学生第二次考试数学成绩的均值与标准差的和为99 分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若sinxcosy+cosxsiny=$\frac{1}{2}$,cos2x-cos2y=$\frac{2}{3}$,则sin(x-y)等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

同步练习册答案