精英家教网 > 高中数学 > 题目详情
19.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2017)2f(x+2017)-9f(-3)>0的解集(  )
A.(-∞,-2010)B.(-∞,-2014)C.(-2014,0)D.(-2020,0)

分析 根据题意,令g(x)=x2f(x),x∈(-∞,0),对g(x)求导分析可得g(x)在(-∞,0)递减,原问题转化为g(2017+x)>g(-3),根据函数的单调性得到关于x的不等式组,解出即可.

解答 解:根据题意,令g(x)=x2f(x),x∈(-∞,0),
故g′(x)=x[2f(x)+xf′(x)],
而2f(x)+xf'(x)>x2
故x<0时,g′(x)<0,g(x)递减,
(x+2017)2f(x+2017)-9f(-3)>0,即(x+2017)2f(x+2017)>(-3)2f(-3),
则有g(x+2017)>g(-3),
则有x+2017<-3,
解可得x<2020;
即不等式(x+2017)2f(x+2017)-9f(-3)>0的解集为(-∞,-2010);
故选:A.

点评 本题考查函数的单调性与导数的关系,关键是构造函数g(x)=x2f(x),并利用导数分析g(x)的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知抛物线y2=4px(p>0)上一点M到该抛物线焦点F的距离|MF|=3p,则直线MF的斜率为(  )
A.±2$\sqrt{2}$B.±1C.±$\sqrt{3}$D.±$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.现有6个大小形状完全相同但颜色不同(包括红色和蓝色)的小球,将它们放入5个标号分别为1、2、3、4、5的盒子内,每个盒子不放空,则红球和篮球不放在标号为偶数的同一盒子内的放法数为1752(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.原点与极点重合,x轴正半轴与极轴重合,则点(-2,-2$\sqrt{3}$)的极坐标是(  )
A.(4,-$\frac{2π}{3}$)B.(4,$\frac{π}{3}$)C.(4,$\frac{4π}{3}$)D.(4,$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=(a2-a-1)xa(a是常数)为幂函数,且在第一象限单调递增.
(1)求f(x)的表达式;
(2)讨论函数g(x)=$\frac{f(x)+3x+1}{x}$在(-$\sqrt{2}$,+∞)上的单调性,并证之.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.公元263年左右,我国数学有刘徽发现当圆内接多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的“徽率”.某同学利用刘徽的“割圆术”思想设计了一个计算圆周率的近似值的程序框图如图,则输出S的值为
(参考数据:sin15°=0.2588,sin7.5°=0.1305)(  )
A.2.598B.3.106C.3.132D.3.142

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线x=a(a>0)分别与直线y=3x+3,曲线y=2x+lnx交于A、B两点,则|AB|最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,在其定义域上是偶函数的是(  )
A.y=sinxB.y=|sinx|C.y=tanxD.y=cos(x-$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用反证法证明命题:“若a,b∈R,则函数f(x)=x3+ax-b至少有一个零点”时,假设应为(  )
A.函数没有零点B.函数有一个零点
C.函数有两个零点D.函数至多有一个零点

查看答案和解析>>

同步练习册答案