精英家教网 > 高中数学 > 题目详情
4.公元263年左右,我国数学有刘徽发现当圆内接多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的“徽率”.某同学利用刘徽的“割圆术”思想设计了一个计算圆周率的近似值的程序框图如图,则输出S的值为
(参考数据:sin15°=0.2588,sin7.5°=0.1305)(  )
A.2.598B.3.106C.3.132D.3.142

分析 列出循环过程中S与n的数值,满足判断框的条件即可结束循环.

解答 解:模拟执行程序,可得:
n=6,S=3sin60°=$\frac{3\sqrt{3}}{2}$,
不满足条件n>24,n=12,S=6×sin30°=3,
不满足条件n>24,n=24,S=12×sin15°=12×0.2588=3.1056,
不满足条件n>24,n=48,S=24×sin7.5°=24×0.1305=3.132,
满足条件n>24,退出循环,输出S的值为3.132.
故选:C.

点评 本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=2px(p>0),直线l与抛物线C相交于A,B两点,P为抛物线上一点,当直线l过抛物线焦点时,|AB|的最小值为2.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若AB的中点为(3,1),且直线PA,PB的倾斜角互补,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用篱笆围一个面积为100m2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是(  )?
A.30B.36C.40D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知复数z=x+yi(x,y∈R),且|z-2|=$\sqrt{3}$,则$\frac{y}{x}$的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2017)2f(x+2017)-9f(-3)>0的解集(  )
A.(-∞,-2010)B.(-∞,-2014)C.(-2014,0)D.(-2020,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.执行如图所示的流程图,则输出的k的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a是实数,若$\frac{a-i}{1+i}$是纯虚数,其中i是虚数单位,则a=(  )
A.1B.-1C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等差数列{an}中,若a2=-1,a6=5,则S7=(  )
A.14B.-17C.-15D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点A(-2,3)在抛物线y2=2px的准线上,抛物线焦点为F,则直线AF的斜率为(  )
A.-$\frac{1}{2}$B.-$\frac{3}{4}$C.-1D.-$\frac{4}{3}$

查看答案和解析>>

同步练习册答案