精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的对称轴方程和单调递增区间;
(2)若中,分别是角的对边,且,求的面积.

(1) ,;(2)

解析试题分析:(1)
                    2分
,即
对称轴方程为                    4分

单调递增区间为                  6分
(2)
                      8分
,由正弦定理得            10分
①当时,由余弦定理得

                12分
②当时,得,又
,所以不符合条件
综上:的面积为.             14分
考点:本题考查了三角函数的变换及性质、正余弦定理的运用
点评:此类问题比较综合,除了考查三角函数恒等变换、性质外,还综合考查了正余弦定理的运用,解题时注意分类讨论思想的运用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,且.
(1)求函数的最小正周期及单调增区间;
(2)若,求函数的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的单调递增区间;
(2)当时,的值域是的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数·(其中>o),且函数的最小正周期为
(I)求f(x)的最大值及相应x的取值
(Ⅱ)将函数y= f(x)的图象向左平移单位长度,再将所得图象各点的横坐标缩小为原来的倍(纵坐标不变)得到函数y=g(x)的图象.求函数g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为坐标原点,对于函数,称向量为函数的伴随向量,同时称函数为向量的伴随函数.
(Ⅰ)设函数,试求的伴随向量的模;
(Ⅱ)记的伴随函数为,求使得关于的方程内恒有两个不相等实数解的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是△的三个内角,向量,且
(1)求角
(2)若,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的最大值和最小值;
(2)若的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调递减区间;
(2)当时,求函数的最值及相应的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在区间上的函数的图象关于直线对称,当时,函数,其图象如图

(1)求函数的表达式;
(2)求方程的解.

查看答案和解析>>

同步练习册答案