精英家教网 > 高中数学 > 题目详情

已知函数·(其中>o),且函数的最小正周期为
(I)求f(x)的最大值及相应x的取值
(Ⅱ)将函数y= f(x)的图象向左平移单位长度,再将所得图象各点的横坐标缩小为原来的倍(纵坐标不变)得到函数y=g(x)的图象.求函数g(x)的单调区间.

(1)f(x)的最大值为2,对应x的取值是x=
(2)函数的增区间为[] ;减区间为[],.

解析试题分析:解:(Ⅰ)因为, 2分
因为,函数周期为,所以  4分
, f(x)的最大值为2,对应x的取值是x=    6分
(Ⅱ)由(Ⅰ)知. 将函数的图象向左平移个单位后得到函数的图象,再将所得图象各点的横坐标缩小为原来的倍,纵坐标不变,得到函数.  9分
;得
 ;得
故函数的增区间为[] ;
减区间为[],..13分
考点:三角函数的化简和性质
点评:主要是考查了三角函数的性质以及二倍角公式的运用,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)若,求的单调的递减区间;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小值和最小正周期;
(2)已知内角的对边分别为,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(Ⅰ)若,求使函数为偶函数。
(Ⅱ)在(I)成立的条件下,求满足=1,∈[-π,π]的的集合。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值;
(2)求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最小正周期是,其图象经过点
(1)求函数的表达式;
(2)已知的三个内角分别为,若;求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的对称轴方程和单调递增区间;
(2)若中,分别是角的对边,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且处的切线斜率为
(1)求的值,并讨论上的单调性;
(2)设函数,其中,若对任意的总存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和单调递增区间;
(2)将函数的图像上各点的纵坐标保持不变,横坐标缩短到原来的,把所得到的图像再向左平移单位,得到的函数的图像,求函数在区间上的最小值.

查看答案和解析>>

同步练习册答案