精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的最小正周期和单调递增区间;
(2)将函数的图像上各点的纵坐标保持不变,横坐标缩短到原来的,把所得到的图像再向左平移单位,得到的函数的图像,求函数在区间上的最小值.

(1)函数f(x)的最小正周期为=
f(x)的单调递增区间为 ,
(2)当x = 时,

解析试题分析:(1)因为=
函数f(x)的最小正周期为=

得f(x)的单调递增区间为 ,
(2)根据条件得=,当时,
所以当x = 时,
考点:本题主要考查三角函数的和差倍半公式的应用,三角函数的图象和性质,正弦型函数的图象变换。
点评:典型题,涉及三角函数的考题,往往需要先利用三角函数公式,将函数“化一”,以便进一步研究函数的性质。关于复合函数的单调区间的确定,遵循“内外层函数,同增异减”。本题(3)涉及角的范围,极易出错,应特别注意。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数·(其中>o),且函数的最小正周期为
(I)求f(x)的最大值及相应x的取值
(Ⅱ)将函数y= f(x)的图象向左平移单位长度,再将所得图象各点的横坐标缩小为原来的倍(纵坐标不变)得到函数y=g(x)的图象.求函数g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调递减区间;
(2)当时,求函数的最值及相应的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若时,求的最大值及相应的的值;
(2)是否存在实数,使得函数最大值是?若存在,求出对应的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的图像如图所示,其中,

(1)求出A、的值;
(2)由函数经过平移变换可否得到函数的图像?若能,平移的最短距离是多少个单位?否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求sinx-cosx的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在区间上的函数的图象关于直线对称,当时,函数,其图象如图

(1)求函数的表达式;
(2)求方程的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设关于x的函数y=2cos2x﹣2acosx﹣(2a+1)的最小值为f(a),试确定满足的a的值,并对此时的a值求y的最大值.

查看答案和解析>>

同步练习册答案