精英家教网 > 高中数学 > 题目详情

(本小题满分12分)某投资公司投资甲、乙两个项目所获得的利润分别是P(亿
元)和Q(亿元),它们与投资额t(亿元)的关系有经验公式P=,Q=t.今该公司将5
亿元投资这两个项目,其中对甲项目投资x(亿元),投资这两个项目所获得的总利润为y(亿
元).求:(1)y关于x的函数表达式;
(2)总利润的最大值.

解:(1)根据题意,得y=(5-x),x∈[0,5].
(2)令t=,t∈[0,],则x=
y=-t+=-(t-2)2.
因为2∈[0,],所以当=2,即x=时,
y最大值.所以总利润的最大值是亿元.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分13分)
函数
(1)求证函数在区间上存在唯一的极值点,并用二分法求函数取得极值时相应的近似值(误差不超过);(参考数据
(2)当时,若关于的不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)若函数.
(1)求函数f(x)的单调递增区间。
(2)求在区间[-3,4]上的值域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
若函数在(0,4)上为单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数f(x)=kx3-3(k+1)x2-2k2+4,若f(x)的单调减区间为(0,4).
(1)求k的值;
(2)对任意的t∈[-1,1],关于x的方程2x2+5x+a=f(t)总有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数
(I)求函数的单调区间;
(II)若,在(1,2)上为单调递
减函数。求实数a的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若曲线在点处的切线方程为y=3x+1,求函数的解析式;
(2)讨论函数的单调性;[来

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数f(x)=2sinxcosx是(  )

A.最小正周期为2π的奇函数 B.最小正周期为2π的偶函数 
C.最小正周期为π的奇函数 D.最小正周期为π的偶函数 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过点,且在
单调递减,在上单调递增.
(1)求的解析式;
(2)若对于任意的,不等式恒成立,试问
这样的是否存在.若存在,请求出的范围,若不存在,说明理由

查看答案和解析>>

同步练习册答案