精英家教网 > 高中数学 > 题目详情
3.函数f(x)=sin2x+sinxcosx+1的最小正周期是π,单调递减区间是[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$](k∈Z).

分析 由三角函数公式化简可得f(x)=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{3}{2}$,易得最小正周期,解不等式2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$可得函数的单调递减区间.

解答 解:化简可得f(x)=sin2x+sinxcosx+1
=$\frac{1}{2}$(1-cos2x)+$\frac{1}{2}$sin2x+1
=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{3}{2}$,
∴原函数的最小正周期为T=$\frac{2π}{2}$=π,
由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$可得kπ+$\frac{3π}{8}$≤x≤kπ+$\frac{7π}{8}$,
∴函数的单调递减区间为[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$](k∈Z)
故答案为:π;[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$](k∈Z)

点评 本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin2x-sin2(x-$\frac{π}{6}$),x∈R.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间[-$\frac{π}{3}$,$\frac{π}{4}$]内的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是(  )
A.$\frac{{|{BF}|-1}}{{|{AF}|-1}}$B.$\frac{{{{|{BF}|}^2}-1}}{{{{|{AF}|}^2}-1}}$C.$\frac{{|{BF}|+1}}{{|{AF}|+1}}$D.$\frac{{{{|{BF}|}^2}+1}}{{{{|{AF}|}^2}+1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[-1,1]上的最大值.
(1)证明:当|a|≥2时,M(a,b)≥2;
(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.
(Ⅰ)证明:∠CBD=∠DBA;
(Ⅱ)若AD=3DC,BC=$\sqrt{2}$,求⊙O的直径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4{b}^{2}}$=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.
(i)求|$\frac{OQ}{OP}$|的值;
(ii)求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(  )
A.0.648B.0.432C.0.36D.0.312

查看答案和解析>>

同步练习册答案