精英家教网 > 高中数学 > 题目详情
15.投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(  )
A.0.648B.0.432C.0.36D.0.312

分析 判断该同学投篮投中是独立重复试验,然后求解概率即可.

解答 解:由题意可知:同学3次测试满足X∽B(3,0.6),
该同学通过测试的概率为${C}_{3}^{2}(0.6)^{2}×(1-0.6)+{C}_{3}^{3}({0.6)}^{3}$=0.648.
故选:A.

点评 本题考查独立重复试验概率的求法,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数f(x)=sin2x+sinxcosx+1的最小正周期是π,单调递减区间是[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$](k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知x,y∈R,向量$\overrightarrow{α}$=$[\begin{array}{l}{1}\\{-1}\end{array}]$是矩阵$[\begin{array}{l}{x}&{1}\\{y}&{0}\end{array}]$的属于特征值-2的一个特征向量,求矩阵A以及它的另一个特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设椭圆E的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为$\frac{{\sqrt{5}}}{10}$.
(1)求E的离心率e;
(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MN⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=e2x-alnx.
(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;
(Ⅱ)证明:当a>0时,f(x)≥2a+aln$\frac{2}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3+ax+$\frac{1}{4}$,g(x)=-lnx
(i)当 a为何值时,x轴为曲线y=f(x)的切线;
(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.${({{x^3}+\frac{1}{{2\sqrt{x}}}})^5}$的展开式中x8的系数是$\frac{5}{2}$(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+$\sqrt{3}$px-p+1=0(p∈R)两个实根.
(Ⅰ)求C的大小
(Ⅱ)若AB=3,AC=$\sqrt{6}$,求p的值.

查看答案和解析>>

同步练习册答案