精英家教网 > 高中数学 > 题目详情
4.${({{x^3}+\frac{1}{{2\sqrt{x}}}})^5}$的展开式中x8的系数是$\frac{5}{2}$(用数字作答).

分析 先求出二项式展开式的通项公式,再令x的幂指数等于8,求得r的值,即可求得展开式中的x8的系数.

解答 解:由于${({{x^3}+\frac{1}{{2\sqrt{x}}}})^5}$的展开式的通项公式为 Tr+1=${C}_{5}^{r}$•$\frac{1}{{2}^{r}}$•${x}^{15-\frac{7r}{2}}$,
令15-$\frac{7r}{2}$=8,求得r=2,故开式中x8的系数是 ${C}_{5}^{2}$•$\frac{1}{4}$=$\frac{5}{2}$,
故答案为:$\frac{5}{2}$.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4{b}^{2}}$=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.
(i)求|$\frac{OQ}{OP}$|的值;
(ii)求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(  )
A.0.648B.0.432C.0.36D.0.312

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若实数x,y满足x2+y2≤1,则|2x+y-2|+|6-x-3y|的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\frac{{2\sqrt{2}}}{3}$|$\overrightarrow{b}$|,且($\overrightarrow{a}$-$\overrightarrow{b}$)⊥(3$\overrightarrow{a}$+2$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.
(Ⅰ)求三种粽子各取到1个的概率;
(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“x=1”是“x2-2x+1=0”的(  )
A.充要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如题图,三棱锥P-ABC中,平面PAC⊥平面ABC,∠ABC=$\frac{π}{2}$,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.
(Ⅰ)证明:AB⊥平面PFE.
(Ⅱ)若四棱锥P-DFBC的体积为7,求线段BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.等差数列{an}中,a2=4,a4+a7=15.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2${\;}^{{a}_{n}-2}$+n,求b1+b2+b3+…+b10的值.

查看答案和解析>>

同步练习册答案