分析 (Ⅰ)根据直径的性质即可证明:∠CBD=∠DBA;
(Ⅱ)结合割线定理进行求解即可求⊙O的直径.
解答 证明:(Ⅰ)∵DE是⊙O的直径,
则∠BED+∠EDB=90°,
∵BC⊥DE,
∴∠CBD+∠EDB=90°,即∠CBD=∠BED,
∵AB切⊙O于点B,
∴∠DBA=∠BED,即∠CBD=∠DBA;
(Ⅱ)由(Ⅰ)知BD平分∠CBA,
则$\frac{BA}{BC}=\frac{AD}{CD}$=3,
∵BC=$\sqrt{2}$,
∴AB=3$\sqrt{2}$,AC=$\sqrt{A{B}^{2}-B{C}^{2}}=4$,
则AD=3,
由切割线定理得AB2=AD•AE,
即AE=$\frac{A{B}^{2}}{AD}=6$,
故DE=AE-AD=3,
即可⊙O的直径为3.
点评 本题主要考查直线和圆的位置关系的应用和证明,根据相应的定理是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+$\sqrt{3}$ | B. | 2+$\sqrt{3}$ | C. | 1+2$\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com