精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论函数的单调性;

2)讨论函数的零点个数.

【答案】1)当时,上单调递增,当时,)上单调递减,在上单调递增;(2)当时,1个零点;当时,2个零点;当时,0个零点.

【解析】

1)对函数求导,分类讨论时的单调性,即可得到结果.

2不是的零点,即可分类参量,求解的交点个数问题,对新函数求导后作图,进而计算出零点个数问题.

1的定义域为

时,所以上单调递增,

时,由

所以单调递减,

单调递增 ,

综上,当时,上单调递增,

时,)上单调递减,在上单调递增;

2)显然不是的零点,

时,由

,则.

所以上单调递减,上单调递减,上单调递增,

且当时,,当x从左边趋近于0时,,当x从右边趋近于0时,,画出的图象如图,数形结合知,

时,1个零点,

时,2个零点,

时,0个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.为曲线上的动点,点在射线上,且满足.

(Ⅰ)求点的轨迹的直角坐标方程;

(Ⅱ)设轴交于点,过点且倾斜角为的直线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】420名工人编号为:001002420,采用系统抽样的方法抽取一个容量为60的样本,且随机抽得的号码为005.这420名工人来自三个工厂,从001200工厂,从201355工厂,从356420工厂,则三个工厂被抽中的工人数依次为

A.28239B.272310C.272211D.282210

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现在给出三个条件:①a2;②B;③cb.试从中选出两个条件,补充在下面的问题中,使其能够确定△ABC,并以此为依据,求△ABC的面积.

在△ABC中,abc分别是角ABC的对边,且满足,求△ABC的面积(选出一种可行的方案解答,若选出多个方案分别解答,则按第一个解答记分)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,直线lP为直线l上一点,且点P在极轴上方OP为一边作正三角形逆时针方向,且面积为

Q点的极坐标;

外接圆的极坐标方程,并判断直线l外接圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地举办水果观光采摘节,并推出配套旅游项目,统计了4月份100名游客购买水果的情况,得到如图所示的频率分布直方图.

1)若将消费金额不低于80元的游客称为“水果达人”,现用分层抽样的方法从样本的“水果达人”中抽取5人,求这5人中消费金额不低于100元的人数;

2)从(1)中的5人中抽取2人作为幸运客户免费参加配套旅游项目,请列出所有的可能结果,并求这2人中至少有1人购买金额不低于100元的概率;

3)为吸引顾客,该地特推出两种促销方案,

方案一:每满80元可立减8元;

方案二:金额超过50元但又不超过80元的部分打9折,金额超过80元但又不超过100元的部分打8折,金额超过100元的部分打7折.

若水果的价格为11元/千克,某游客要购买10千克,应该选择哪种方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为是椭圆上的一点,且在第一象限内,过且斜率等于-1的直线与椭圆交于另一点,点关于原点的对称点为

(1)证明:直线的斜率为定值;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线和直线的直角坐标方程;

(Ⅱ)直线轴交点为,经过点的直线与曲线交于两点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)求函数的值域;

2)若不等式对任意恒成立,求实数的取值范围;

3)证明:

查看答案和解析>>

同步练习册答案