精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,直线lP为直线l上一点,且点P在极轴上方OP为一边作正三角形逆时针方向,且面积为

Q点的极坐标;

外接圆的极坐标方程,并判断直线l外接圆的位置关系.

【答案】(1) ;(2)直线与圆相外切.

【解析】

直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.

利用一元二次方程根和系数的关系求出结果.

由题意,直线l,以OP为一边作正三角形逆时针方向

,由且面积为,则:,得,所以.

由于为正三角形,所以:OQ的极角为,且,所以

由于为正三角形,得到其外接圆的直径

外接圆上任意一点.

中,,所以满足

的外接圆方程

又由直线l的外接圆直角坐标方程为

可得圆心到直线的距离,即为半径,故直线与圆相外切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy,曲线=0(a>0),曲线的参数方程为(为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系;

(1)求曲线的极坐标方程;

(2)已知极坐标方程为=的直线与曲线分别相交于P,Q两点(均异于原点O),若|PQ|=﹣1,求实数a的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,EB垂直于菱形ABCD所在平面,且EBBC2,∠BAD60°,点GH分别为线段CDDA的中点,MBE上的动点.

(Ⅰ)求证:GHDM

(Ⅱ)当三棱锥DMGH的体积最大时,求三角形MGH的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:

土地使用面积(单位:亩)

1

2

3

4

5

管理时间(单位:月)

8

10

13

25

24

并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:

愿意参与管理

不愿意参与管理

男性村民

150

50

女性村民

50

1)求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?

2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?

3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望。

参考公式:

其中。临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=exax1e为自然对数的底数),a0

1)若函数fx)恰有一个零点,证明:aaea1

2)若fx≥0对任意x∈R恒成立,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/2

如下表所示:


A

B

C

D

E

身高

1.69

1.73

1.75

1.79

1.82

体重指标

19.2

25.1

18.5

23.3

20.9

(Ⅰ)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率

(Ⅱ)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,把函数的图象向右平移个单位,再把图象上所有的点的横坐标缩小到原来的一半(纵坐标不变),得到函数的图象,则下列结论正确的是(

A.的最小正周期为B.的图象关于直线对称

C.的一个零点为D.上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】瑞士著名数学家欧拉在研究几何时曾定义欧拉三角形,的三个欧拉点(顶点与垂心连线的中点)构成的三角形称为的欧拉三角形.如图,的欧拉三角形(H的垂心).已知,若在内部随机选取一点,则此点取自阴影部分的概率为________.

查看答案和解析>>

同步练习册答案