精英家教网 > 高中数学 > 题目详情
9.已知点的极坐标为$(2,\frac{2π}{3})$那么它的直角坐标为(  )
A.$(\sqrt{3},-1)$B.$(-\sqrt{3},-1)$C.$(-1,\sqrt{3})$D.$(-1,-\sqrt{3})$

分析 利用x=ρcosθ,y=ρsinθ即可得出直角标准.

解答 解:点的极坐标为$(2,\frac{2π}{3})$,可得它的直角坐标x=2$cos\frac{2π}{3}$=-1,y=2$sin\frac{2π}{3}$=$\sqrt{3}$.即$(-1,\sqrt{3})$.
故选:C.

点评 本题考查了极坐标化为直角坐标,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知复数z满足(2+i)z=2-i(i为虚数单位),则z=(  )
A.3+4iB.3-4iC.$\frac{3}{5}$+$\frac{4}{5}$iD.$\frac{3}{5}$-$\frac{4}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow a=(m,n),\overrightarrow b=(1,-2)$,若$|\overrightarrow a|=2\sqrt{5},\overrightarrow a=λ\overrightarrow b(λ<0)$,则m-n=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a1、a2∈R,且$\frac{1}{2+sin{α}_{1}}$+$\frac{1}{2+sin(2{α}_{2})}$=2,则|10π-α12|的最小值等于$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2007200820092010201120122013
年份代号t1234567
人均纯收入y2.93.33.64.4a5.25.9
y关于t的线性回归方程为$\stackrel{∧}{y}$=0.5t+2.3,则a的值为4.8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了研究某种微生物的生长规律,需要了解环境温度x(°C)对该微生物的活性指标y的影响,某实验小组设计了一组实验,并得到如表的实验数据:
环境温度x(°C)1234567
活性指标y28272624252322
(Ⅰ)由表中数据判断y关于x的关系较符合$\widehaty=\widehatbx+\widehata$还是$\widehaty={2^{\widehatbx+\widehata}}$,并求y关于x的回归方程($\widehata$,$\widehatb$取整数);
(Ⅱ)根据(Ⅰ)中的结果分析:若要求该种微生物的活性指标不能低于26.3,则环境温度应不得高于多少°C?
附:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个空间几何体的三视图及部分数据如下图所示,则该几何体的体积是(  )
A.$\frac{{32+8\sqrt{3}}}{3}$B.16C.12D.$32+8\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线C1:ρsinθ-2=0,曲线C2:ρ-4cosθ=0,则曲线C1、C2的位置关系是(  )
A.相交B.相切C.重合D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=axlnx+b在点(1,f(1))处的切线方程为y=x-1,g(x)=λ(x-1)(其中λ为常数).
(1)求函数f(x)的解析式;
(2)若对任意x∈[1,+∞),不等式f(x)≥g(x)恒成立,求实数λ的取值范围;
(3)当x>1时,求证:[f(x-1)-(x-3)][f(ex)-3(ex-3)]≥9-e2(其中e为自然对数的底数).

查看答案和解析>>

同步练习册答案