精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x2-(a-2)x-alnx(a∈R).
(Ⅰ)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数y=f(x)的单调区间;
(Ⅲ)当a=1时,证明:对任意的x>0,f(x)+ex>x2+x+2.

分析 (Ⅰ)代入a值,求出导函数,利用导函数的概念求出切线方程;
(Ⅱ)求出导函数,对参数a进行分类讨论,得出导函数的正负,判断原函数的单调性;
(Ⅲ)整理不等式得ex-lnx-2>0,构造函数h(x)=ex-lnx-2,则$h'(x)={e^x}-\frac{1}{x}$,通过特殊值$h'(\frac{1}{3})={e^{\frac{1}{3}}}-3<0,h'(1)=e-1>0$,知存在唯一实根x0,即${e^{x_0}}=\frac{1}{x_0}$,得出函数的最小值为$h{(x)_{min}}=h({x_0})={e^{x_0}}-ln{x_0}-2=\frac{1}{x_0}-ln\frac{1}{{{e^{x_0}}}}-2=\frac{1}{x_0}+{x_0}-2>0$.

解答 解:(Ⅰ)当a=3时,$f(x)={x^2}-x-3lnx,f'(x)=2x-1-\frac{3}{x}$,f'(1)=-2.(1分)
f(1)=0.(2分)
所以曲线y=f(x)在点(1,f(1))处的切线方程为y=-2(x-1),即2x+y-2=0.(3分)
(Ⅱ)由题意知,函数f(x)的定义域为(0,+∞),
由已知得$f'(x)=2x-(a-2)-\frac{a}{x}=\frac{{2{x^2}-(a-2)x-a}}{x}=\frac{(2x-a)(x+1)}{x}$.(4分)
当a≤0时,f'(x)>0,函数f(x)在(0,+∞)上单调递增,
所以函数f(x)的单调递增区间为(0,+∞).(5分)
当a>0时,由f'(x)>0,得$x>\frac{a}{2}$,由f'(x)<0,得$0<x<\frac{a}{2}$,
所以函数f(x)的单调递增区间为$(\frac{a}{2},+∞)$,单调递减区间为$(0,\frac{a}{2})$.(6分)
综上,当a≤0时,函数f(x)的单调递增区间为(0,+∞);
当a>0时,函数f(x)的单调递增区间为$(\frac{a}{2},+∞)$,单调递减区间为$(0,\frac{a}{2})$.(7分)
(Ⅲ)证明:当a=1时,不等式f(x)+ex>x2+x+2可变为ex-lnx-2>0,(8分)
令h(x)=ex-lnx-2,则$h'(x)={e^x}-\frac{1}{x}$,可知函数h'(x)在(0,+∞)单调递增,(9分)
而$h'(\frac{1}{3})={e^{\frac{1}{3}}}-3<0,h'(1)=e-1>0$,
所以方程h'(x)=0在(0,+∞)上存在唯一实根x0,即${e^{x_0}}=\frac{1}{x_0}$.(10分)
当x∈(0,x0)时,h'(x)<0,函数h(x)单调递减;
当x∈(x0,+∞)时,h'(x)>0,函数h(x)单调递增;(11分)
所以$h{(x)_{min}}=h({x_0})={e^{x_0}}-ln{x_0}-2=\frac{1}{x_0}-ln\frac{1}{{{e^{x_0}}}}-2=\frac{1}{x_0}+{x_0}-2>0$.(12分)
即ex-lnx-2>0在(0,+∞)上恒成立,
所以对任意x>0,f(x)+ex>x2+x+2成立.

点评 考查了导函数概念的应用,参数的讨论问题和恒成立问题的转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在空间四边形ABCD中,E,F分别是AB,BC的中点.求证:EF和AD为异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知两圆x2+y2=1和(x-1)2+(y-1)2=1.求:
(1)两圆的公共弦所在直线的方程;
(2)公共弦所在直线被圆C:x2+y2-2x-2y-$\frac{17}{4}$=0所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.“无字证明”(proofs without words),就是将数学命题用简单、有创意而且易于理解的几何图形来呈现.请利用图甲、图乙、图丙的面积关系,写出该图所验证的一个三角恒等变换公式:cos(α-β)=cosαcosβ+sinαsinβ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x,y,z∈R,且$\frac{1}{x}$$+\frac{2}{y}$$+\frac{3}{z}$=1,则x+$\frac{y}{2}$+$\frac{z}{3}$的最小值是(  )
A.5B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C;$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(0,2),且离心率为$\frac{\sqrt{5}}{5}$
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右焦点分别为F1、F2,若在直线x=3上存在点P使得线段PF2的垂直平分线与椭圆C有且只有一个公共点T,证明:F1,T,P三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ex(x-aex)恰有两个极值点x1,x2(x1<x2),则a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(1,3)C.($\frac{1}{2}$,3)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,若输入n的值为10,则输出S的值是(  )
A.45B.46C.55D.56

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.图中阴影部分可表示为(A∩B)∪(CU(A∪B)).

查看答案和解析>>

同步练习册答案